23 Pakhcmov A G, Mathur S P, Doyle J, et al. Comparative effects of extremely high power microwave pulses and brief CW irradiation on pacemaker function in isolated frog heart slices. Bioelectromagnetics, 2000, 110: 351-360
[2]
24 Tei C, Horikiri Y, Park J C, et al. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation, 1995, 91: 2582-2590
[3]
25 Boone T, Westendorf T, Ayres P, Cardiovascular responses to a hot tub bath. J Altern Complem Med, 1999, 5: 301-304
[4]
26 Rosenbaum T, Gordon S E. Quickening the pace: looking into the heart of HCN channels. Neuron, 2004, 42: 193-196
[5]
1 Heribert S, Konig I R, Sekar K, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genet, 2011, 43: 333-338
3 Herfst L J, Book M B, Jongsma H J. Trafficking and functional expression of cardiac Na+ channels. J Mod Cell Cardiol, 2004, 36: 185-193
[8]
4 Shimizu W, Aiba T, Kamakura S. Mechanisms of disease: current understanding and future challenges in Brugada syndrome. Nat Clin Pract Cardiovasc Med, 2005, 2: 408-414
[9]
5 Juang J M, Huang S K. Brugada syndrome-an under-recognized electrical disease in patients with sudden cardiac death. Cardiology, 2004, 101: 157-169
[10]
6 Vatta M, Dumaine R, Varghese G, et al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet, 2002, 11: 337-345
[11]
7 Benson D W, Wang D W, Dyment M, et al. Congenital sick sinus syndrome caused by recessicve mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest, 2003, 112: 1019-1028
[12]
8 Dobrzynski H, Boyeet M R, Anderson R H. Newo insights into pacemaker activity: Promoting understanding of sick sinus syndrome. Circulation, 2007, 115: 1921-1932
[13]
9 Schott J J, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associated with mutations in SCN5A. Nature Genet, 1999, 23: 20-21
[14]
10 Chiang C E. Congenital and acquired long QT syndrome: current concepts and management. Cardiol Rev, 2004, 12: 222-234
[15]
11 Towbin J A, Vatta M. Molecular biology and the prolonged QT syndromes. Am J Med, 2001, 110: 385-398
[16]
12 Ackerman M J, Siu B L, Sturner W Q, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA, 2001, 286: 2264-2269
[17]
13 Plant L D, Bowers P N, Liu Q, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest, 2006, 116: 430-435
[18]
14 Viswanathan P C, Balser J R. Inherited sodium channelopathies: a continuum of channel dysfunction. Trends Cardiovasc Med, 2004, 14: 28-35
[19]
15 Chen H S, Zhang J Q, Liu J Q. Selective effects of external noise on Ca2+ signal in mesoscopic scale biochemical cell systems. Biophys Chem, 2007, 125: 397-402
[20]
16 Zhang J Q, Qi F, Xin H W. Effects of noise on the off rate of Ca2+ binding proteins in a coupled biochemical cell system. Biophys Chem, 2001, 94: 201-207
[21]
17 Zhang H, Holden A V, Kodama I, et al. Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol, 2000, 279: 397-421
[22]
18 Zhang H, Zhao Y, Lei M, et al. Computational evaluation of the roles of Na+ current, iNa, and cell death in cardiac pacemaking and driving. Am J Physiol Heart Circ Physiol, 2007, 292: 165-174
[23]
19 Timothy D B, Oleg VA, Shin I, et al. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ. Res, 2010, 107: 126-137
[24]
20 Honjo H, Boyett M R, Kodama I, et al. Correlation between electrical activity and the size of rabbit sinoatrial node cells. J Physiol, 1996, 496: 795-808
[25]
21 Wani B A, Khalil M Z, Al-Nozha M M, et al. Aborted sudden nocturnal cardiac death in a young man with structurally normal heart. Saudi Med J, 2005, 26: 323-325
[26]
22 Brian P D, Jonathan S. pH modification of human T-type calcium channel gating. Biophys J, 2000, 78: 1895-1905