1 Quigley H A. Number of people with glaucoma worldwide. Br J Ophthalmol, 1996, 80: 389-393
[2]
2 Quigley H A, Broman A T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol, 2006, 90: 262-267
[3]
3 Wong A A, Brown R E. A neurobehavioral analysis of the prevention of visual impairment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci, 2012, 53: 5956-5966
[4]
4 Jayawant S S, Bhosle M J, Anderson R T, et al. Depressive symptomatology, medication persistence, and associated healthcare costs in older adults with glaucoma. J Glaucoma, 2007, 16: 513-520
[5]
5 Pappa C, Hyphantis T, Pappa S, et al. Psychiatric manifestations and personality traits associated with compliance with glaucoma treatment. J Psychosom Res, 2006, 61: 609-617
[6]
6 Onen S H, Mouriaux F, Berramdane L, et al. High prevalence of sleep-disordered breathing in patients with primary open-angle glaucoma. Acta Ophthalmol Scan, 2000, 78: 638-641
[7]
7 Kohn A N, Moss A P, Podos S M. Relative afferent pupillary defects in glaucoma without characteristic field loss. Arch Ophthalmol, 1979, 97: 294-296
[8]
8 Warthen D M, Wiltgen B J, Provencio I. Light enhances learned fear. Proc Natl Acad Sci USA, 2011, 108: 13788-13793
[9]
9 Roecklein K A, Wong P M, Miller M A, et al. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder. Neurosci Biobehav Rev, 2013, 37: 229-239
[10]
10 Cumurcu T, Cumurcu B E, Celikel F C, et al. Depression and anxiety in patients with pseudoexfoliative glaucoma. Gen Hosp Psychiatry, 2006, 28: 509-515
[11]
11 Jampel H D, Frick K D, Janz N K, et al. Depression and mood indicators in newly diagnosed glaucoma patients. Am J Ophthalmol, 2007, 144: 238-244
[12]
12 Yochim B P, Mueller A E, Kane K D, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma, 2012, 21: 250-254
[13]
13 Wang S Y, Singh K, Lin S C. Prevalence and predictors of depression among participants with glaucoma in a nationally representative population sample. Am J Ophthalmol, 2012, 154: 436-444
[14]
14 Popescu M L, Boisjoly H, Schmaltz H, et al. Explaining the relationship between three eye diseases and depressive symptoms in older adults. Invest Ophthalmol Vis Sci, 2012, 53: 2308-2313
[15]
15 Do M T, Yau K W. Intrinsically photosensitiveretinal ganglion cells. Physio Rev, 2010, 90: 1547-1581
[16]
16 Chen S K, Badea T C, Hattar S. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature, 2011, 476: 92-95
[17]
17 Lucas R J, Hattar S, Takao M, et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 2003, 299: 245-247
[18]
18 LeGates T A, Altimus C M, Wang H, et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature, 2012, 491: 594-598
[19]
19 Ren C, Luan L, Lau B W, et al. Direct retino-raphe projection alters serotonergic tone and affective behavior. Neuropsychopharmacology, 2013, 38: 1163-1175
[20]
20 Allcutt D, Berry M, Sievers J. A qualitative comparison of the reactions of retinal ganglion cell axons to optic nerve crush in neonatal and adult mice. Brain Res, 1984, 318: 231-240
[21]
21 Kielczewski J L, Pease M E, Quigley H A. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci, 2005, 46: 3188-3196
[22]
22 Villegas-perez M P, Salvador-silva M, Ruiz-gomez J M, et al. Retinal ganglion cell death after different transient periods of pressure-induced Ischemia and survival intervals. A quantitative in vivo study. Invest Ophthalmol Vis Sci, 2002, 37: 2002-2014
[23]
23 Morrison J C. Elevated intraocular pressure and optic nerve injury models in the rat. J Glaucoma, 2005,14: 315-317
[24]
24 Nair K S, Hmani-Aifa M, Ali Z, et al. Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat Genet, 2011, 43: 579-584
[25]
25 John S W, Smith R S, Savinova O V, et al. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci, 1998, 39: 951-962
[26]
26 Chang B, Smith R S, Hawes N L, et al. Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nature Genet, 1999, 21: 405-409
[27]
27 Anderson M G, Smith R S, Hawes N L, et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nature Genet, 2002, 30: 81-85
[28]
28 Feng G, Mellor R H, Bernstein M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28: 41-51
[29]
29 Raymond I D, Pool A L, Vila A, et al. A Thy1-CFP DBA/2J mouse line with cyan fluorescent protein expression in retinal ganglion cells. Visual Neurosci, 2009, 26: 453-465
[30]
30 Leahy K M, Ornberg R L, Wang Y, et al. Quantitative ex vivo detection of rodent retinal ganglion cells by immunolabeling Brn-3b. Exp Eye Res, 2004, 79: 131-140
[31]
31 Goz D, Studholme K, Lappi D A, et al. Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE, 2008, 3: e3153
[32]
32 Sholl D A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat, 1953, 87: 387-406
[33]
33 Raymond I D, Vila A, Huynh U C, et al. CFP expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis, 2008, 14: 1559-1574
[34]
34 Feigl B, Mattes D, Thomas R, et al. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci, 2011, 52: 4362-4367
[35]
35 Kankipati L, Girkin C A, Gamlin P D. The post-illumination pupil response is reduced in glaucoma patients. Invest Ophthalmol Vis Sci, 2011, 52: 2287-2292
[36]
36 La Morgia C, Ross-Cisneros F N, Hannibal J, et al. Melanopsin-expressing retinal ganglion cells: implications for human diseases. Vision Res, 2011, 51: 296-302
[37]
37 Hattar S, Kumar M, Park A, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 2006, 497: 326-349
[38]
38 Xiang M, Zhou L, Macke J P, et al. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci, 1995, 15: 4762-4785
[39]
39 Kaback M B, Burde R M, Becker B. Relative afferent pupillary defect in glaucoma. Am J Ophthalmol, 1976, 81: 462-468
[40]
40 Li R S, Chen B Y, Tay D K, et al. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci, 2006, 47: 2951-2958
[41]
41 Jakobs T C, Libby R T, Ben Y, et al. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol, 2005, 171: 313-325
[42]
42 Dulawa S C, Holick K A, Gundersen B, et al. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology, 2004, 29: 1321-1330
[43]
43 Weiss G A, Goldich Y, Bartov E, et al. Compliance with eye care in glaucoma Patients with comorbid depression. Isr Med Assoc J, 2011, 13: 730-734
[44]
44 Hollo G, Kothy P, Anna G, et al. Personality traits, depression, and objectively measured adherence to once-daily prostaglandin analog medication in glaucoma. J Glaucoma, 2009, 18: 288-292
[45]
45 Wilson M R, Coleman A L, Yu F, et al. Depression in patients with glaucoma as measured by self-report surveys. Ophthalmology, 2002, 109: 1018-1022
[46]
46 Luan L, Ren C, Lau B W, et al. Y-like retinal ganglion cells innervate the dorsal raphe nucleus in the mongolian gerbil (Meriones unguiculatus). PLoS ONE, 2011, 6: e18938
[47]
47 Bouwknecht J A, Paylor R. Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains. Behav Brain Res, 2002, 136: 489-501
[48]
48 Lipkind D, Sakov A, Kafkafi N, et al. New replicable anxiety-related measures of wall vs center behavior of mice in the open field. J Appl Physiol, 2004, 97: 347-359
[49]
49 Can A, Blackwell R A, Piantadosi S C, et al. Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes Brain Behav, 2011, 10: 434-443
[50]
50 Roecklein K A, Rohan K J, Duncan W C, et al. A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disord, 2009, 114: 279-285
[51]
51 Jawahar M C, Brodnicki T C, Quirk F, et al. Behavioural analysis of congenic mouse strains confirms stress-responsive Loci on chromosomes 1 and 12. Behav Genet, 2008, 38: 407-416
[52]
52 Sokoloff G, Parker C C, Lim J E, et al. Anxiety and fear in a cross of C57BL/6J and DBA/2J mice: mapping overlapping and independent QTL for related traits. Genes Brain Behav, 2011, 10: 604-614
[53]
53 Fraser L M, Brown R E, Hussin A, et al. Measuring anxiety- and locomotion -related behaviours in mice: a new way of using old tests. Psychopharmacology (Berl), 2010, 211: 99-112
[54]
54 Hofstetter J R, Hofstetter A R, Hughes A M, et al. Intermittent long-wavelength red light increases the period of daily locomotor activity in mice. J Circadian Rhythms, 2005, 3: 8-15
[55]
55 Hovatta I, Tennant R S, Helton R, et al. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature, 2005, 438: 662-666