全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于差异表达基因探索大肠癌早期转移相关分子机制

DOI: 10.1360/052013-45, PP. 579-588

Keywords: 大肠癌,转移,分子标签,筛选,生物信息学

Full-Text   Cite this paper   Add to My Lib

Abstract:

大肠癌是消化道常见的恶性肿瘤之一.转移是造成大肠癌患者死亡的首要原因,因此明确大肠癌早期转移相关分子事件中的关键基因,对大肠癌的诊断与治疗均有重要意义.因此本研究通过大肠癌基因表达谱数据筛选差异表达基因,并通过荧光定量PCR验证,再通过生物信息学方法分析差异表达基因在大肠癌早期转移中所起到的关键作用.通过上述研究,最终筛选出了与大肠癌早期转移相关差异表达基因共16个,其中表达上调的9个基因分别为VSNL1,PSAT1,KIAA1199,ABHD7,MMP7,JUB,CLDN1,KRT23,FOXQ1.表达下调的7个基因分别为SFRP1,SLC4A4,CHGA,GCG,GUCA2B,CLDN8,CD177.经过分析,与组织分化程度相关的基因有PSAT1和JUB,与肿瘤分期相关的基因有VSNL1和MMP7.而且VSNL1,PSAT1,CLDN1,SLC4A4,GCG基因在进化过程中较为保守.综上所述,上调的9个差异表达基因及下调的7个差异表达基因在大肠癌转移分子机制中可能起着重要作用,因其在大肠癌中的特异度较高,有望能够成为联合诊断的分子标签.

References

[1]  22 Suzuki H, Watkins D N, Jair K W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet, 2004, 36: 417-422
[2]  23 Grone J, Weber B, Staub E, et al. Differential expression of genes encoding tight junction proteins in colorectal cancer: frequent dysregulation of claudin-1, -8 and -12. Int J Colorectal Dis, 2007, 22: 651-659
[3]  24 Lin J H, Zhang S M, Rexrode K M, et al. Association between sex hormones and colorectal cancer risk in men and women. Clin Gastroenterol Hepatol, 2012, 11: 419-424
[4]  1 Secco G B, Fardelli R, Rovida S, et al. Critical review of treatment outcome in 54 patients with synchronous liver metastasis of colorectal cancer. Minerva Chir, 1997, 52: 875-883
[5]  2 Barrett T, Troup D B, Wilhite S E, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res, 2009, 37: D885-D890
[6]  3 Shi Q, Pavey E S, Carter R E. Bonferroni-based correction factor for multiple, correlated endpoints. Pharm Stat, 2012, 11: 300-309
[7]  4 Wang X, Spandidos A, Wang H, et al. PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res, 2012, 40: D1144-D1149
[8]  5 Schoonjans F, Zalata A, Depuydt C E, et al. MedCalc: a new computer program for medical statistics. Comput Methods Programs Biomed, 1995, 48: 257-262
[9]  6 Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739
[10]  7 Goulet A C, Watts G, Lord J L, et al. Profiling of selenomethionine responsive genes in colon cancer by microarray analysis. Cancer Biol Ther, 2007, 6: 494-503
[11]  8 Findeisen P, Rockel M, Nees M, et al. Systematic identification and validation of candidate genes for detection of circulating tumor cells in peripheral blood specimens of colorectal cancer patients. Int J Oncol, 2008, 33: 1001-1010
[12]  9 Vie N, Copois V, Bascoul-Mollevi C, et al. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol Cancer, 2008, 7: 14
[13]  10 Lapointe L C, Pedersen S K, Dunne R, et al. Discovery and validation of molecular biomarkers for colorectal adenomas and cancer with application to blood testing. PLoS ONE, 2012, 7: e29059
[14]  11 Birkenkamp-Demtroder K, Maghnouj A, Mansilla F, et al. Repression of KIAA1199 attenuates Wnt-signalling and decreases the proliferation of colon cancer cells. Br J Cancer, 2011, 105: 552-561
[15]  12 Nastase A, Paslaru L, Niculescu A M, et al. Prognostic and predictive potential molecular biomarkers in colon cancer. Chirurgia (Bucur), 2011, 106: 177-185
[16]  13 Nakagawa S, Miyoshi N, Ishii H, et al. Expression of CLDN1 in colorectal cancer: a novel marker for prognosis. Int J Oncol, 2011, 39: 791-796
[17]  14 Birkenkamp-Demtroder K, Mansilla F, Sorensen F B, et al. Phosphoprotein Keratin 23 accumulates in MSS but not MSI colon cancers in vivo and impacts viability and proliferation in vitro. Mol Oncol, 2007, 1: 181-195
[18]  15 Kaneda H, Arao T, Tanaka K, et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res, 2010, 70: 2053-2063
[19]  16 Qiao Y, Jiang X, Lee S T, et al. FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res, 2011, 71: 3076-3086
[20]  17 Harbig J, Sprinkle R, Enkemann S A. A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array. Nucleic Acids Res, 2005, 33: e31
[21]  18 Perry J, Ashworth A. Evolutionary rate of a gene affected by chromosomal position. Curr Biol, 1999, 9: 987-989
[22]  19 Matsuzaki S, Tanaka F, Mimori K, et al. Clinicopathologic significance of KIAA1199 overexpression in human gastric cancer. Ann Surg Oncol, 2009, 16: 2042-2051
[23]  20 O-Charoenrat P, Sarkaria I, Talbot S G, et al. SCCRO (DCUN1D1) induces extracellular matrix invasion by activating matrix metalloproteinase 2. Clin Cancer Res, 2008, 14: 6780-6789
[24]  21 Estilo C L, O-Charoenrat P, Ngai I, et al. The role of novel oncogenes squamous cell carcinoma-related oncogene and phosphatidylinositol 3-kinase p110alpha in squamous cell carcinoma of the oral tongue. Clin Cancer Res, 2003, 9: 2300-2306

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133