8 Rosenthal A, Mork P, Li M H, et al. Cloud computing: a new business paradigm for biomedical information sharing. J Biomed Inform, 2010, 43: 342-353
[2]
9 Re C, Ro A, Re A. Will computers crash genomics? Science, 2010, 5: 1190
[3]
10 Darling A, Carey L, Feng W C. The design, implementation, and evaluation of mpiBLAST. In: Proceedings of ClusterWorld. San Jose. 2003. 14
[4]
11 Schadt E E, Linderman M D, Sorenson J, et al. Computational solutions to large-scale data management and analysis. Nat Rev Genet, 2010, 11: 647-657
[5]
12 Wall D P, Kudtarkar P, Fusaro V A, et al. Cloud computing for comparative genomics. BMC Bioinformatics, 2010, 11: 259
[6]
13 Stein L D. The case for cloud computing in genome informatics. Genome Biol, 2010, 11: 207
[7]
14 Dudley J T, Pouliot Y, Chen R, et al. Translational bioinformatics in the cloud: an affordable alternative. Genome Med, 2010, 2: 51
[8]
15 Wilkening J, Wilke A, Desai N, et al. Using clouds for metagenomics: a case study. In: IEEE International Conference on Cluster Computing. New Orleans. 2009. 1-6
18 Mell P, Grance T. The NIST definition of cloud computing (draft). NIST Spec Publ, 2011, 800: 145
[12]
19 Kivity A, Kamay Y, Laor D, et al. Kvm: the linux virtual machine monitor. In: Proceedings of the Linux Symposium 2007. Ottawa. 2007. 225-230
[13]
20 Barham P, Dragovic B, Fraser K, et al. Xen and the art of virtualization. ACM SIGOPS Operating Systems Review, 2003, 37: 164-177
[14]
23 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun Acm, 2008, 51: 107-113
[15]
24 Isard M, Budiu M, Yu Y, et al. Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Operating Systems Review, 2007, 41: 59-72
[16]
25 Yang H C, Dasdan A, Hsiao R L, et al. Map-reduce-merge: simplified relational data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. Beijing, 2007, 1029-1040
[17]
26 Ghemawat S, Gobioff H, Leung S T. The google file system. ACM SIGOPS Operating Systems Review, 2003, 37: 29-43
[18]
27 Borthakur D. The hadoop distributed file system: architecture and design. Hadoop Project Website, 2007, 11: 21
[19]
28 Schwan P. Lustre: building a file system for 1000-node clusters. In: Proceedings of the Linux Symposium 2003, Ottawa, 2003, 401-408
[20]
29 Goecks J, Nekrutenko A, Taylor J, et al. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol, 2010, 11: R86
[21]
30 Meyer F, Paarmann D, D’souza M, et al. The metagenomics rast server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 2008, 9: 386
[22]
31 Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commun Acm, 2010, 53: 50-58
[23]
32 Bateman A, Wood M. Cloud computing. Bioinformatics, 2009, 25: 1475
[24]
33 Dudley J T, Butte A J. In silico research in the era of cloud computing. Nat biotechnol, 2010, 28: 1181
35 Meng B, Pratx G, Xing L. Ultrafast and scalable cone-beam ct reconstruction using mapreduce in a cloud computing environment. Med Phys, 2011, 38: 6603
[27]
36 Chen T S, Liu C H, Chen T L, et al. Secure dynamic access control scheme of phr in cloud computing. J Med Syst, 2012, 36: 4005-4020
[28]
37 Matsunaga A, Tsugawa M, Fortes J. CloudBLAST: combining mapreduce and virtualization on distributed resources for bioinformatics applications. In: Proceedings of the 2008 Fourth IEEE International Conference on eScience. Indianapolis, 2008, 222-229
[29]
38 Di Tommaso P, Orobitg M, Guirado F, et al. Cloud-Coffee: implementation of a parallel consistency-based multiple alignment algorithm in the t-coffee package and its benchmarking on the amazon elastic-cloud. Bioinformatics, 2010, 26: 1903-1904
[30]
39 Schatz M C. CloudBurst: highly sensitive read mapping with mapreduce. Bioinformatics, 2009, 25: 1363-1369
[31]
40 Talukder A K, Gandham S, Prahalad H, et al. Cloud-MAQ: the cloud-enabled scalable whole genome reference assembly application. In: Proceedings of the 7th International Conference on Wireless and Optical Communications Networks, WOCN 2010. Colombo, 2010, 1-5
[32]
41 Nguyen T, Shi W, Ruden D. CloudAligner: a fast and full-featured mapreduce based tool for sequence mapping. BMC Res Notes, 2011, 4: 171
[33]
42 Langmead B, Schatz M C, Lin J, et al. Searching for SNPs with cloud computing. Genome Biol, 2009, 10: R134
[34]
43 Habegger L, Balasubramanian S, Chen D Z, et al. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment. Bioinformatics, 2012, 28: 2267-2269
[35]
44 Fischer M, Snajder R, Pabinger S, et al. SIMPLEX: cloud-enabled pipeline for the comprehensive analysis of exome sequencing data. PLoS ONE, 2012, 7: e41948
[36]
45 Kostic A D, Ojesina A I, Pedamallu C S, et al. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat biotechnol, 2011, 29: 393-396
[37]
46 Zhao G, Bu D, Liu C, et al. CloudLCA: finding the lowest common ancestor in metagenome analysis using cloud computing. Protein Cell, 2012, 3: 148-152
[38]
47 Langmead B, Hansen K D, Leek J T. Cloud-scale RNA-sequencing differential expression analysis with myrna. Genome Biol, 2010, 11: R83
[39]
48 Jourdren L, Bernard M, Dillies M A, et al. Eoulsan: a cloud computing-based framework facilitating high throughput sequencing analyses. Bioinformatics, 2012, 28: 1542-1543
[40]
49 Hong D, Rhie A, Park S S, et al. FX: an RNA-seq analysis tool on the cloud. Bioinformatics, 2012, 28: 721-723
[41]
21 Nurmi D, Wolski R, Grzegorczyk C, et al. The eucalyptus open-source cloud-computing system. In: CCGRID’09: IEEE. Washington. 2009. 124-131
1 Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26: 1135-1145
[44]
2 Fox J, Kling J. Chinese institute makes bold sequencing play. Nat Biotechnol, 2010, 28: 189-191
[45]
3 Manyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute, 2011, 1-137
[46]
4 Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490: 55-60
[47]
5 Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24: 133
[48]
6 Schatz M C, Langmead B, Salzberg S L. Cloud computing and the DNA data race. Nat Biotechnol, 2010, 28: 691
[49]
7 Gathering clouds and a sequencing storm: why cloud computing could broaden community access to next-generation sequencing. Nat Biotechnol, 2010, 28: 1, doi: 10.1038/nbt0110-1
[50]
50 Feng X, Grossman R, Stein L. PeakRanger: a cloud-enabled peak caller for chip-seq data. BMC Bioinformatics, 2011, 12: 139
[51]
51 Afgan E, Baker D, Coraor N, et al. Harnessing cloud computing with galaxy cloud. Nat Biotechnol, 2011, 29: 972-974
[52]
52 Angiuoli S V, Matalka M, Gussman A, et al. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics, 2011, 12: 356
[53]
53 Krampis K, Booth T, Chapman B, et al. Cloud Biolinux: pre-configured and on-demand bioinformatics computing for the genomics community. BMC Bioinformatics, 2012, 13: 42
[54]
54 Afgan E, Baker D, Coraor N, et al. Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics, 2010, 11: S4
[55]
55 Zhang L, Gu S, Liu Y, et al. Gene set analysis in the cloud. Bioinformatics, 2012, 28: 294-295
[56]
56 Lee H, Yang Y, Chae H, et al. bioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on amazon ec2. IEEE Trans Nanobioscience, 2012, 11: 266-272
[57]
57 Trudgian D C, Mirzaei H. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing. J Proteome Res, 2012, 11: 6282-6290
[58]
58 O’Connor B, Merriman B, Nelson S. SeqWare Query Engine: storing and searching sequence data in the cloud. BMC Bioinformatics, 2010, 11: S2
[59]
59 Sch?nherr S, Forer L, Weissensteiner H, et al. Cloudgene: a graphical execution platform for mapreduce programs on private and public clouds. BMC Bioinformatics, 2012, 13: 200
[60]
60 Niemenmaa M, Kallio A, Schumacher A, et al. Hadoop-BAM: directly manipulating next generation sequencing data in the cloud. Bioinformatics, 2012, 28: 876-877
[61]
61 Metzker M L. Sequencing technologies—the next generation. Nat Rev Genet, 2009, 11: 31-46
[62]
62 Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410
[63]
63 Hugot J P, Chamaillard M, Zouali H, et al. Association of nod2 leucine-rich repeat variants with susceptibility to crohn''s disease. Nature, 2001, 411: 599-603
[64]
64 Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10: R25
[65]
65 Li R, Li Y, Fang X, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res, 2009, 19: 1124-1132
[66]
66 Subramanian A, Tamayo P, Mootha V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005, 102: 15545-15550
[67]
67 Nam S, Li M, Choi K, et al. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microrna expression. Nucleic Acids Res, 2009, 37: W356-W362
[68]
68 Trudgian D C, Thomas B, McGowan S J, et al. CPFP: a central proteomics facilities pipeline. Bioinformatics, 2010, 26: 1131-1132
[69]
69 Taylor R C. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics. BMC Bioinformatics, 2010, 11: S1
[70]
70 Zaharia M, Chowdhury M, Franklin M J, et al. Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Boston, 2010, 10