全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于微景观试验模型系统下作物丰富度对害虫-天敌关系的影响

, PP. 548-556

Keywords: 生物控害功能,生物量,生境管理,微景观,营养层

Full-Text   Cite this paper   Add to My Lib

Abstract:

作物丰富度与害虫、天敌生物量关系及其对农田生物控害保益功能的影响一直是生态学研究的热点问题之一,也是害虫种群生态调控的基础.本研究于2007~2010年连续4年,通过设计农田生态系统5个作物丰富度水平,基于多种作物的微景观试验模型系统调查研究了各个作物丰富度水平下害虫和天敌种类组成,并测定了其生物量,应用广义可加模型分析了作物丰富度对害虫-天敌生物量及其控害保益功能的影响.结果表明,作物丰富度对害虫及天敌的生物量没有显著性影响,不同作物丰富度的小区中害虫及天敌的生物量差异不显著;相邻营养层(植物与害虫、害虫与天敌)之间的生物量显著相关,而不相邻营养层(植物与天敌)之间生物量则相关不显著.以天敌-害虫生物量的比值作为控害保益功能指数表明,4种作物的小区中该指数最高,而过高或过低的作物丰富度都导致生物控害能力下降.基于微景观试验模型系统的研究结果表明:农田生态系统中植物与害虫、害虫与天敌相邻营养级之间的生物量显著相关,适当的作物丰富度可增加农田生态系统的生物控害功能.这将为实现生物控害的作物种植格局规划与设计提供重要的理论基础,也为害虫种群可持续控制提供了新思路与新方法.

References

[1]  4 Men X Y, Ge F, Yardim E N, et al. Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids in seedling cotton. Biocontrol, 2004, 49: 701-714
[2]  5 Root R B. Organization of a plant-arthropod association in simple and diverse habitats-fauna of Collards (Brassica-Oleracea). Ecol Monogr, 1973, 43: 95-120
[3]  6 Wenninger E J, Inouye R S. Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem. J Arid Environ, 2008, 72: 24-33
[4]  7 戈峰, 丁岩钦. 多样化的棉田生态系统控害保益功能研究. 应用生态学报, 1997, 8: 295-298
[5]  8 Cardinale B J, Srivastava D S, Duffy J E, et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 2006, 443: 989-992
[6]  9 Haddad N M, Tilman D, Haarstad J, et al. Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat, 2001, 158: 17-35
[7]  10 Landis D A, Wratten S D, Gurr G M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol, 2000, 45: 175-201
[8]  11 Menalled F D, Costamagna A C, Marino P C, et al. Temporal variation in the response of parasitoids to agricultural landscape structure. Agr Ecosyst Environ, 2003, 96: 29-35
[9]  12 赵紫华, 王颖, 贺达汉, 等. 麦蚜和寄生蜂对农业景观格局的响应以及关键景观因子分析. 生态学报, 2012, 32: 472-482
[10]  13 Girma H, Rao M R, Day R, et al. Abundance of insect pests and ther effects on biomass yields of single vs. multi-species planted fallows. Agroforestry Syst, 2006, 68: 93-102
[11]  14 Zhao Z H, He D H, Hui C. From the inverse density-area relationship to the minimum patch size of a host-parasitoid system. Ecol Res, 2012, 27: 303-309
[12]  15 Parker M, Nally R M. Habitat loss and the habitat fragmentation threshold: an experimental evaluation of impacts on richness and total abundances using grassland invertebrates. Biol Conserv, 2002, 105: 217-229
[13]  16 Trichard A, Alignier A, Biju-Duval L, et al. The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic Appl Ecol, 2013, 14: 235-245
[14]  17 Huang Y, Martin L M, Isbell F I, et al. Is community persistence related to diversity? A test with prairie species in a long-term experiment. Basic Appl Ecol, 2013, 14: 199-207
[15]  18 With K A, Pavuk D M. Habitat area trumps fragmentation effects on arthropods in an experimental landscape system. Landscape Ecol, 2011, 26: 1035-1048
[16]  19 Hamback P A, Englund G. Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett, 2005, 8: 1057-1065
[17]  20 Tscharntke T, Bommarco R, Clough Y, et al. Conservation biological control and enemy diversity on a landscape scale. Biol Control, 2008, 45: 238-253
[18]  21 Werling B P, Gratton C. Influence of field margins and landscape context on ground beetle diversity in Wisconsin (USA) potato fields. Agr Ecosyst Environ, 2008, 128: 104-108
[19]  22 戈峰, 于岩钦. 不同类型棉田捕食性天敌的种群能量动态及其对害虫的控制作用. 昆虫学报, 1996, 39: 266-273
[20]  23 Dai J J, Sun L Q, Yang Z H. A general additive-multiplicative rates model for recurrent event data. Sci China Math, 2009, 52: 2257-2265
[21]  24 Frank T, Kehrli P, Germann C. Density and nutritional condition of carabid beetles in wildflower areas of different age. Agr Ecosyst Environ, 2007, 120: 377-383
[22]  25 Gagic V, Tscharntke T, Dormann C F, et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. P Roy Soc B-Biol Sci, 2011, 278: 2946-2953
[23]  26 Jonsson M, Buckley H L, Case B S, et al. Agricultural intensification drives landscape-context effects on host-parasitoid interactions in agroecosystems. J Appl Ecol, 2012, 49: 706-714
[24]  27 Lundy M G, Buckley D J, Boston E S M, et al. Behavioural context of multi-scale species distribution models assessed by radio-tracking. Basic Appl Ecol, 2012, 13: 88-195
[25]  28 Matsumoto T, Itioka T, Nishida T. Cascading effects of a specialist parasitoid on plant biomass in a Citrus agroecosystem. Ecol Res, 2003, 18: 651-659
[26]  29 Stein C, Auge H, Fischer M, et al. Dispersal and seed limitation affect diversity and productivity of montane grasslands. Oikos, 2008, 117: 1469-1478
[27]  30 Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294: 843-845
[28]  1 戈峰. 昆虫生态学的理论与方法. 北京: 高等教育出版社, 2008
[29]  2 Andow D A. Vegetational diversity and arthropod population response. Annu Rev Entomol, 1991, 36: 561-586
[30]  3 Scherber C, Mwangi P N, Temperton V M, et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia, 2006, 147: 489-500
[31]  31 Singh S P, Sah P, Tyagi V, et al. Species diversity contributes to productivity-evidence from natural grassland communities of the Himalaya. Curr Sci India, 2005, 89: 548-552
[32]  32 Fornara D A, Tilman D. Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology, 2009, 90: 408-418
[33]  33 Werling B P, Gratton C. Local and broadscale landscape structure differentially impact predation of two potato pests. Ecol Appl, 2010, 20: 1114-1125
[34]  34 Schmidt-Entling M H, Dobeli J. Sown wildflower areas to enhance spiders in arable fields. Agr Ecosyst Environ, 2009, 133: 19-22
[35]  35 Pluess T, Opatovsky I, Gavish-Regev E, et al. Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agr Ecosyst Environ, 2010, 137: 68-74
[36]  36 D’Alberto C F, Hoffmann A A, Thomson L J. Limited benefits of non-crop vegetation on spiders in Australian vineyards: regional or crop differences? Biocontrol, 2012, 57: 541-552
[37]  37 Hui C, Boonzaaier C, Boyero L. Estimating changes in species abundance from occupancy and aggregation. Basic Appl Ecol, 2012, 13: 169-17
[38]  38 Messelink G J, Bloemhard C M J, Sabelis M W, et al. Biological control of aphids in the presence of thrips and their enemies. Biocontrol, 2013, 58: 45-55
[39]  39 Schmidt M H, Thies C, Nentwig W, et al. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr, 2008, 35: 157-166
[40]  40 赵紫华, 王颖, 贺达汉, 等. 苜蓿草地生境丧失与破碎化对昆虫物种丧失与群落重建的影响. 生物多样性, 2011, 19: 453-462
[41]  41 Zaviezo T, Grez A A, Estades C F, et al. Effects of habitat loss, habitat fragmentation, and isolation on the density, species richness, and distribution of ladybeetles in manipulated alfalfa landscapes. Ecol Entomol, 2006, 31: 646-656
[42]  42 Grez A, Zaviezo T, Tischendorf L, et al. A transient, positive effect of habitat fragmentation on insect population densities. Oecologia, 2004, 141: 444-451
[43]  43 赵紫华, 欧阳芳, 贺达汉. 农业景观中不同生境界面麦蚜天敌的边缘效应与溢出效应. 中国科学: 生命科学, 2012, 42: 825-840
[44]  44 赵紫华, 关晓庆, 贺达汉. 农业景观结构对麦蚜寄生蜂群落组成的影响. 应用昆虫学报, 2012, 49: 220-229
[45]  45 Tscharntke T, Tylianakis J M, Rand T A, et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev, 2012, 87: 661-685
[46]  46 Cobbold S M, MacMahon J A. Guild mobility affects spider diversity: links between foraging behavior and sensitivity to adjacent vegetation structure. Basic Appl Ecol, 2012, 13: 597-605
[47]  47 Katsanis A, Babendreier D, Nentwig W, et al. Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. Biocontrol, 2013, 58: 73-83
[48]  48 Géneau C E, W?ckers F L, Luka H, et al. Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl Ecol, 2012, 13: 85-93

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133