全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

罕山不同林型下土壤微生物群落特性

, PP. 499-508

Keywords: 植被类型,土壤有机碳,土壤微生物组成,真菌代谢多样性

Full-Text   Cite this paper   Add to My Lib

Abstract:

选取中国东北部一条典型的次生林垂直分布带谱研究阔叶林和针叶林对土壤微生物群落的影响.分别在山杨(1250~1300m)、山杨和白桦的混交林(1370~1550m)、白桦(1550~1720m)、落叶松(1840~1890m)这4种林型下分3层(0~5cm,5~10cm,10~20cm)采集土壤样品,采用氯仿熏蒸-浸提法、磷脂脂肪酸分析法及BiologFF微孔板来检测土壤微生物生物量、微生物群落结构及真菌群落水平生理图谱.结果表明,土壤理化性质(尤其是土壤有机质和土壤含水率)对土壤微生物生物量、群落组成及真菌代谢多样性的变异有显著影响.土壤微生物量、真菌生物量及真菌代谢活性随土层加深而显著降低,而真菌/细菌的比值随土层加深而升高.落叶松林下真菌的比例高于山杨林、白桦林及混交林,而土壤微生物总量则低于3种林型.虽然不同林型对土壤微生物群落变异的直接贡献率为12%,如果考虑到林型通过土壤有机碳而对土壤微生物群落特性产生的间接贡献,则林型的差异对土壤微生物的群落组成及多样性有显著影响.

References

[1]  1 Bardgett R D, Wardle D A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem processes, and Global Change. New York: Oxford University Press, 2010
[2]  2 Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, 2003, 84: 2042-2050
[3]  3 Wagg C, Husband B C, Green D S, et al. Soil microbial communities from an elevational cline differ in their effect on conifer seedling growth. Plant Soil, 2011, 340: 491-504
[4]  4 Broughton L C, Gross K L. Patterns of diversity in plant and soil microbial communities along a productivity gradient in a michigan old-field. Oecologia, 2000, 125: 420-427
[5]  5 Maly S, Korthals G W, van Dijk C, et al. Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biol Fert Soils, 2000, 31: 121-127
[6]  6 Carney K M, Matson P A. Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems, 2005, 8: 928-940
[7]  7 Eviner V T. Plant traits that influence ecosystem processes vary independently among species. Ecology, 2004, 85: 2215-2229
[8]  8 de Deyn G B, Cornelissen J H C, Bardgett R D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett, 2008, 11: 516-531
[9]  9 Hobbie S E, Ogdahl M, Chorover J, et al. Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 2007, 10: 999-1018
[10]  10 Saetre P, Baath E. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol Biochem, 2000, 32: 909-917
[11]  11 Tscherko D, Hammesfahr U, Zeltner G, et al. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl Ecol, 2005, 6: 367-383
[12]  12 Merila P, Malmivaara-Lamsa M, Spetz P, et al. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Appl Soil Ecol, 2010, 46: 259-267
[13]  13 Aneja M K, Sharma S, Fleischmann F, et al. Microbial colonization of beech and spruce litter -influence of decomposition site and plant litter species on the diversity of microbial community. Microbial Ecol, 2006, 52: 127-135
[14]  14 Kazakou E, Vile D, Shipley B, et al. Co-variations in litter decomposition, leaf traits and plant growth in species from a mediterranean old-field succession. Funct Ecol, 2006, 20: 21-30
[15]  15 Zak D R, Tilman D, Parmenter R R, et al. Plant-production and soil-microorganisms in late-successional ecosystems—a continental-scale study. Ecology, 1994, 75: 2333-2347
[16]  16 Mitchell R J, Hester A J, Campbell C D, et al. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant Soil, 2012, 351: 355-362
[17]  17 Wardle D A, Yeates G W, Nicholson K S, et al. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol Biochem, 1999, 31: 1707-1720
[18]  18 Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a ph gradient using physiological and plfa-based techniques. Soil Biol Biochem, 2003, 35: 955-963
[19]  19 Fierer N, Strickland M S, Liptzin D, et al. Global patterns in belowground communities. Ecol Lett, 2009, 12: 1238-1249
[20]  20 Staddon W J, Trevors J T, Duchesne L C, et al. Soil microbial diversity and community structure across a climatic gradient in western canada. Biodivers Conserv, 1998, 7: 1081-1092
[21]  21 Carletti P, Vendramin E, Pizzeghello D, et al. Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant Soil, 2009, 315: 47-65
[22]  24 Merila P, Strommer R, Fritze H. Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western finland. Soil Biol Biochem, 2002, 34: 1647-1654
[23]  25 Hogberg M N, Baath E, Nordgren A, et al. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs-a hypothesis based on field observations in boreal forest. New Phytol, 2003, 160: 225-238
[24]  26 Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils, 1996, 22: 59-65
[25]  27 Ulery A L, Graham R C, Chadwick O A, et al. Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma, 1995, 65: 121-134
[26]  28 Taylor D L, Herriott I C, Stone K E, et al. Structure and resilience of fungal communities in alaskan boreal forest soils. Can J Forest Res, 2010, 40: 1288-1301
[27]  29 Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass-c. Soil Biol Biochem, 1987, 19: 703-707
[28]  30 Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass c by fumigation extraction-an automated procedure. Soil Biol Biochem, 1990, 22: 1167-1169
[29]  31 Brookes P C, Kragt J F, Powlson D S, et al. Chloroform fumigation and the release of soil-nitrogen-the effects of fumigation time and temperature. Soil Biol Biochem, 1985, 17: 831-835
[30]  32 Bligh E G, Dyer W J. Orange-red flesh in cod and haddock. J Fish Res Board Ca, 1959, 16: 449-452
[31]  33 Frostegard J, Haegerstrand A, Gidlund M, et al. Biologically modified ldl increases the adhesive properties of endothelial-cells. Atherosclerosis, 1991, 90: 119-126
[32]  34 Frostegard A, Baath E, Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biol Biochem, 1993, 25: 723-730
[33]  35 Frostegard A, Tunlid A, Baath E. Phospholipid fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Appl Environ Microb, 1993, 59: 3605-3617
[34]  36 Baath E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microbial Ecol, 2003, 45: 373-383
[35]  37 Singh M P. Application of biolog ff microplate for substrate utilization and metabolite profiling of closely related fungi. J Microbiol Meth, 2009, 77: 102-108
[36]  38 Dixon P. Vegan, a package of r functions for community ecology. J Veg Sci, 2003, 14: 927-930
[37]  39 Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology, 1992, 73: 1045-1055
[38]  40 Okland R H. Partitioning the variation in a plot-by-species data matrix that is related to n sets of explanatory variables. J Veg Sci, 2003, 14: 693-700
[39]  41 Manly B F J. Randomization, Bootstrap and Monte Carlo Methods in Biology. London: Chapman & Hall/CRC, 2006
[40]  42 Frostegard A, Tunlid A, Baath E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth, 1991, 14: 151-163
[41]  43 Saetre P. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 1999, 22: 183-192
[42]  44 Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem, 2003, 35: 837-843
[43]  45 Kramer C, Gleixner G. Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem, 2008, 40: 425-433
[44]  22 Rogers B F, Tate R L. Temporal analysis of the soil microbial community along a toposequence in pineland soils. Soil Biol Biochem, 2001, 33: 1389-1401
[45]  23 White C, Tardif J C, Adkins A, et al. Functional diversity of microbial communities in the mixed boreal plain forest of central canada. Soil Biol Biochem, 2005, 37: 1359-1372
[46]  46 Joergensen R G, Wichern F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem, 2008, 40: 2977-2991
[47]  47 Wardle D A, Nilsson M C, Zackrisson O, et al. Determinants of litter mixing effects in a swedish boreal forest. Soil Biol Biochem, 2003, 35: 827-835
[48]  48 Bauhus J, Pare D, Cote L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem, 1998, 30: 1077-1089
[49]  49 Ponge J F. Succession of fungi and fauna during decomposition of needles in a small area of scots pine litter. Plant Soil, 1991, 138: 99-113
[50]  50 Quideau S A, Chadwick O A, Graham R C, et al. Base cation biogeochemistry and weathering under oak and pine: a controlled long-term experiment. Biogeochemistry, 1996, 35: 377-398
[51]  51 Myers R T, Zak D R, White D C, et al. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J, 2001, 65: 359-367
[52]  52 Rey A, Pegoraro E, Jarvis P G. Carbon mineralization rates at different soil depths across a network of european forest sites (forcast). Eur J Soil Sci, 2008, 59: 1049-1062
[53]  53 Jiang Y M, Chen C R, Liu Y Q, et al. Soil soluble organic carbon and nitrogen pools under mono- and mixed species forest ecosystems in subtropical china. J Soil Sediment, 2010, 10: 1071-1081
[54]  54 Bailey V L, Smith J L, Bolton H. Fungal-to-bacterial ratios in soils investigated for enhanced c sequestration. Soil Biol Biochem, 2002, 34: 997-1007
[55]  55 Ingwersen J, Poll C, Streck T, et al. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biol Biochem, 2008, 40: 864-878

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133