全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

灵芝:一种研究天然药物合成的模式真菌

DOI: 10.1360/052012-425, PP. 447-456

Keywords: 灵芝,模式生物,天然药物,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

模式生物在生命科学研究中发挥着核心作用,缺乏成熟的药用模式生物研究体系已成为阻碍天然药物生物合成研究发展的重要瓶颈.灵芝是目前研究最深入的药用生物之一,具有模式生物的鲜明特征:世代短、子代多、基因组小、培养条件简单、可进行遗传转化、对人体和环境无害等.灵芝多元化的次生代谢途径使其成为研究天然药物生物合成及其调控的理想模式生物.近期,全基因组序列的测定完成为灵芝成为模式生物奠定了坚实的基础.作为药用模式真菌,灵芝将在次生代谢产物多样性研究、药用真菌发育生物学及天然药物合成生物学等领域发挥重要作用.同时,推广灵芝成为一种新的模式生物将有利于整合现代生命科学的前沿技术和研究策略,进而深入阐明次生代谢研究领域中具有普遍性的机制和规律,为建设高效可控的天然药物合成平台奠定基础.

References

[1]  1 Hunter P. The paradox of model organisms. EMBO Rep, 2008, 9: 717-720
[2]  2 Davis R H. The age of model organisms. Nat Rev Genet, 2004, 5: 69-76
[3]  3 朱作言. 模式生物研究. 生命科学, 2006, 18: 419
[4]  4 陈士林, 孙永珍, 徐江, 等. 本草基因组计划研究策略. 药学学报, 2010, 45: 807-812
[5]  5 陈士林, 朱孝轩, 李春芳, 等. 中药基因组学与合成生物学. 药学学报, 2012, 47: 1070-1078
[6]  34 Chen X, Hu Z P, Yang X X, et al. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int Immunopharmacol, 2006, 6: 499-508
[7]  35 Ji Z, Tang Q, Zhang J, et al. Immunomodulation of bone marrow macrophages by GLIS, a proteoglycan fraction from Lingzhi or Reishi medicinal mushroom Ganoderma lucidium (W.Curt.:Fr.) P. Karst. Int J Med Mushrooms, 2011, 13: 441-448
[8]  36 Tsai C C, Yang F L, Huang Z Y, et al. Oligosaccharide and peptidoglycan of Ganoderma lucidum activate the immune response in human mononuclear cells. J Agric Food Chem, 2012, 60: 2830-2837
[9]  37 Sliva D. Ganoderma lucidum in cancer research. Leukemia Res, 2006, 30: 767-768
[10]  38 Wang S Y, Hsu M L, Hsu H C, et al. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer, 1997, 70: 699-705
[11]  39 Kimura Y, Taniguchi M, Baba K. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res, 2002, 22: 3309-3318
[12]  40 Cao Q Z, Lin Z B. Antitumor and anti-angiogenic activity of Ganoderma lucidum polysaccharides peptide. Acta Pharmacol Sin, 2004, 25: 833-838
[13]  41 Li C H, Chen P Y, Chang U M, et al. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci, 2005, 77: 252-265
[14]  42 Xu T, Beelman R B, Lambert J D. The cancer preventive effects of edible mushrooms. Anticancer Agents Med Chem, 2012, 12: 1255-1263
[15]  43 Wu Q P, Xie Y Z, Deng Z, et al. Ergosterol peroxide isolated from Ganoderma lucidum abolishes microRNA miR-378-mediated tumor cells on chemoresistance. PLoS ONE, 2012, 7: e44579
[16]  44 Liu J, Shiono J, Shimizu K, et al. Ganoderic acid DM: anti-androgenic osteoclastogenesis inhibitor. Bioorg Med Chem Lett, 2009, 19: 2154-2157
[17]  45 Zheng J, Yang B, Yu Y, et al. Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting beta-cells. Comb Chem High T Scr, 2012, 15: 542-550
[18]  46 Lee S Y, Rhee H M. Cardiovascular effects of mycelium extract of Ganoderma lucidum: inhibition of sympathetic outflow as a mechanism of its hypotensive action. Chem Pharm Bull, 1990, 38: 1359-1364
[19]  47 Hajjaj H, Mace C, Roberts M, et al. Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Appl Environ Microbiol, 2005, 71: 3653-3658
[20]  48 Kim S D. Isolation and structure determination of a cholesterol esterase inhibitor from Ganoderma lucidum. J Microbiol Biotechnol, 2010, 20: 1521-1523
[21]  49 Paterson R R M. Ganoderma--a therapeutic fungal biofactory. Phytochemistry, 2006, 67: 1985-2001
[22]  50 李晔, 朱忠敏, 姚渭溪, 等. 灵芝三萜类化合物的研究进展. 中国中药杂志, 2012, 2: 165-171
[23]  51 Ren A, Ouyang X, Shi L, et al. Molecular characterization and expression analysis of GlHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum (Ling-zhi) in ganoderic acid biosynthesis pathway. World J Microbiol Biotechnol, 2012, 29: 523
[24]  52 Shang C H, Zhu F, Li N, et al. Cloning and characterization of a gene encoding HMG-CoA reductase from Ganoderma lucidum and its functional identification in yeast. Biosci Biotechnol Biochem, 2008, 72: 1333-1339
[25]  53 Shi L, Qin L, Xu Y, et al. Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from Ganoderma lucidum. Mol Biol Rep, 2012, 39: 6149-6159
[26]  54 Ding Y X, Ou-Yang X, Shang C H, et al. Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum. Biosci Biotechnol Biochem, 2008, 72: 1571-1579
[27]  55 Zhao M W, Liang W Q, Zhang D B, et al. Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J Microbiol Biotechnol, 2007, 17: 1106-1112
[28]  56 Shang C H, Shi L, Ren A, et al. Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from Ganoderma lucidum. Biosci Biotechnol Biochem, 2010, 74: 974-978
[29]  57 Diamantopoulou P, Papanikolaou S, Kapoti M, et al. Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part I: screening various mushroom species. Appl Biochem Biotechnol, 2012, 167: 536-551
[30]  58 Kurita T, Noda Y, Yoda K. Action of multiple endoplasmic reticulum chaperon-like proteins is required for proper folding and polarized localization of Kre6 protein essential in yeast cell wall beta-1,6-glucan synthesis. J Biol Chem, 2012, 287: 17415-17424
[31]  59 Lin Y L, Liang Y C, Tseng Y S, et al. An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-κB and MAPK pathways. J Leukocyte Biol, 2009, 86: 877-889
[32]  60 Wu C T, Lin T Y, Hsu H Y, et al. Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis, 2011, 32: 1890-1896
[33]  61 Bayram O, Krappmann S, Ni M, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 2008, 320: 1504-1506
[34]  62 Bayram O S, Bayram O, Valerius O, et al. LaeA control of Velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet, 2010, 6: e1001226
[35]  63 Bayram O, Braus G H. Coordination of secondary metabolism and development in fungi: the Velvet family of regulatory proteins. Fems Microbiol Rev, 2012, 36: 1-24
[36]  64 Williams R B, Henrikson J C, Hoover A R, et al. Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem, 2008, 6: 1895-1897
[37]  65 Shimamoto K, Kyozuka J. Rice as a model for comparative genomics of plants. Annu Rev Plant Biol, 2002, 53: 399-419
[38]  66 Sun L, Cai H, Xu W, et al. Efficient transformation of the medicinal mushroom Ganoderma lucidum. Plant Mol Biol Rep, 2001, 19: 383-384
[39]  67 李刚, 王强, 刘秋云, 等. 利用PEG法建立药用真菌灵芝的转化系统. 菌物学报, 2004, 23: 255-261
[40]  68 Shi L, Fang X, Li M, et al. Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol, 2012, 28: 283-291
[41]  69 方星, 师亮, 徐颖洁, 等. 灵芝甾醇14甾醇脱甲基酶基因的克隆及超量表达对三萜合成的影响. 菌物学报, 2011, 30: 242-248
[42]  70 Joo S S, Ryu I W, Park J K, et al. Molecular cloning and expression of a laccase from Ganoderma lucidum, and its antioxidative properties. Mol Cells, 2008, 25: 112-118
[43]  71 Ornston L N, Yeh W K. Origins of metabolic diversity: evolutionary divergence by sequence repetition. Proc Natl Acad Sci USA, 1979, 76: 3996-4000
[44]  72 Yeh W K, Ornston L N. Origins of metabolic diversity: substitution of homologous sequences into genes for enzymes with different catalytic activities. Proc Natl Acad Sci USA, 1980, 77: 5365-5369
[45]  73 Wilfried S. Metabolome diversity: too few genes, too many metabolites? Phytochemistry, 2003, 62: 837-849
[46]  74 Erich G. Plant metabolic diversity: a regulatory perspective. Trends Plant Sci, 2005, 10: 57-62
[47]  75 Kittendorf J D, Sherman D H. The methymycin/pikromycin pathway: a model for metabolic diversity in natural product biosynthesis. Bioorgan Med Chem, 2009, 17: 2137-2146
[48]  76 Agger S, Lopez-Gallego F, Schmidt-Dannert C. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol, 2009, 72: 1181-1195
[49]  77 Lopez-Gallego F, Agger S A, Abate-Pella D, et al. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Chembiochem, 2010, 11: 1093-1106
[50]  78 Wawrzyn G T, Quin M B, Choudhary S, et al. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem Biol, 2012, 19: 772-783
[51]  79 Li G, K?llner T G, Yin Y, et al. Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases. Proc Natl Acad Sci USA, 2012, 109: 14711-14715
[52]  80 Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. Plant J, 2011, 66: 194-211
[53]  81 Keasling J D. Synthetic biology and the development of tools for metabolic engineering. Metab Eng, 2012, 14: 189-195
[54]  82 Chang M C, Eachus R A, Trieu W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol, 2007, 3: 274-277
[55]  6 Boh B, Berovic M, Zhang J, et al. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev, 2007, 13: 265-301
[56]  7 Zhou X W, Su K Q, Zhang Y M. Applied modern biotechnology for cultivation of Ganoderma and development of their products. Appl Microbiol Biotechnol, 2012, 93: 941-963
[57]  8 Chen S, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun, 2012, 3: 913
[58]  9 Qian J, Xu H, Song J, et al. Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum. Gene, 2013, 512: 331-336
[59]  10 林志彬. 灵芝的现代研究, 3版. 北京: 北京大学医学出版社, 2007. 25-198
[60]  11 Sanodiya B S, Thakur G S, Baghel R K, et al. Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol, 2009, 10: 717-742
[61]  12 Lee S C, Ni M, Li W, et al. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev, 2010, 74: 298-340
[62]  13 Ni M, Feretzaki M, Sun S, et al. Sex in fungi. Annu Rev Genet, 2011, 45: 405-430
[63]  14 Raudaskoski M, Kothe E. Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell, 2010, 9: 847-859
[64]  15 王立华, 陈向东, 王秋颖, 等. LED光源的不同光质对灵芝菌丝体生长及抗氧化酶活性的影响. 中国中药杂志, 2011, 18: 2471-2474
[65]  16 郝俊江, 陈向东, 兰进. 光质对灵芝生长与灵芝多糖含量的影响. 中国中药杂志, 2010, 17: 2242-2245
[66]  17 郝俊江, 陈向东, 兰进. 光质对灵芝生长及抗氧化酶系统的影响. 中草药, 2011, 12: 2529-2534
[67]  18 Montagnes D, Roberts E, Lukes J, et al. The rise of model protozoa. Trends Microbiol, 2012, 20: 184-191
[68]  19 Xu J W, Zhao W, Zhong J J. Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol, 2010, 87: 457-466
[69]  20 Fang Q H, Zhong J J. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites--ganoderic acid and polysaccharide. Biochem Eng J, 2002, 10: 61-65
[70]  21 Fang Q H, Zhong J J. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem, 2002, 37: 769-774
[71]  22 Tang Y J, Zhong J J. Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol, 2003, 32: 478-484
[72]  23 Zhang W, Tang Y J. A novel three-stage light irradiation strategy in the submerged fermentation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides. Biotechnol Prog, 2008, 24: 1249-1261
[73]  24 Gong H G, Zhong J J. Hydrodynamic shear stress affects cell growth and metabolite production by medicinal mushroom Ganoderma lucidum. Chin J Chem Eng, 2005, 13: 426-428
[74]  25 Liang C X, Li Y B, Xu J W, et al. Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Appl Microbiol Biotechnol, 2010, 86: 1367-1374
[75]  26 Zhu L W, Zhong J J, Tang Y J. Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochem, 2008, 43: 1359-1370
[76]  27 Zhang W X, Tang Y J, Zhong J J. Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum. Bioprocess Biosyst Eng, 2010, 33: 683-690
[77]  28 Wang J L, Gu T, Zhong J J. Enhanced recovery of antitumor ganoderic acid T from Ganoderma lucidum mycelia by novel chemical conversion strategy. Biotechnol Bioeng, 2012, 109: 754-762
[78]  29 Xu Y N, Zhong J J. Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol Adv, 2012, 30: 1301-1308
[79]  30 Xu J W, Xu Y N, Zhong J J. Enhancement of ganoderic acid accumulation by overexpression of an N-terminally truncated 3-hydroxy-3-methylglutaryl coenzyme a reductase gene in the basidiomycete Ganoderma lucidum. Appl Environ Microbiol, 2012, 78: 7968-7976
[80]  31 Kino K, Mizumoto K, Sone T, et al. An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diabetologia, 1990, 33: 713-718
[81]  32 Lin Z B. Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci, 2005, 99: 144-153
[82]  33 Gao Y, Tang W, Dai X, et al. Effects of water-soluble Ganoderma lucidum polysaccharides on the immune functions of patients with advanced lung cancer. J Med Food, 2005, 8: 159-168

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133