全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动脉自旋标记法磁共振量化分析急性肾损伤

, PP. 519-524

Keywords: 动脉自旋标记法,急性肾损伤,肾血流量,磁共振成像

Full-Text   Cite this paper   Add to My Lib

Abstract:

肾脏是维持人体内环境稳态的重要器官,其生理功能主要为水、葡萄糖和氨基酸的重吸收,及通过本身的天然滤过作用排除机体的代谢废物.急性肾损伤是以肾脏排泌功能的急剧丧失和代谢终产物(如尿素氮、血肌酐)的聚集为特征的一类综合征.急性肾损伤常导致慢性肾脏疾病、终末期肾病,甚至死亡.然而,目前为止,急性肾损伤的早期诊断和疗效评价仍然面临挑战.既往研究认为,急性肾损伤的病理生理机制是肾脏氧供给与需求的失衡.本研究采用无创性磁共振动脉自旋标记法评估急性肾损伤,在不引入对比剂的条件下量化分析肾脏血流量.结果表明,与正常对照相比,急性肾损伤患者的肾脏血流量明显降低,这提示采用无创性磁共振动脉自旋标记法可以量化评估肾脏血流量,有助于早期诊断急性肾损伤.

References

[1]  25 Taoka T, Iwasaki S, Nakagawa H, et al. Distinguishing between anterior cerebral artery and middle cerebral artery perfusion by color-coded perfusion direction mapping with arterial spin labeling. AJNR Am J Neuroradiol, 2004, 25: 248-251
[2]  26 Mani S, Pauly J, Conolly S, et al. Background suppression with multiple inversion recovery nulling: applications to projective angiography. Magn Reson Med, 1997, 37: 898-905
[3]  27 Liangos O, Wald R, O’Bell J W, et al. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol, 2006, 1: 43-51
[4]  28 Uchino S. Creatinine. Curr Opin Crit Care, 2010, 16: 562-567
[5]  29 Goldstein S L. Acute kidney injury biomarkers: renal angina and the need for a renal troponin I. BMC Med, 2011, 9: 135
[6]  30 Prowle J R, Ishikawa K, May C N, et al. Renal blood flow during acute renal failure in man. Blood Purif, 2009, 28: 216-225
[7]  12 Artz N S, Sadowski E A, Wentland A L, et al. Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging, 2011, 29: 74-82
[8]  13 Abd E M, Kremser C, Pallwein L, et al. Changes of renal blood flow after ESWL: assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index. Eur J Radiol, 2010, 76: 124-128
[9]  14 Schor-Bardach R, Alsop D C, Pedrosa I, et al. Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology, 2009, 251: 731-742
[10]  15 Fenchel M, Martirosian P, Langanke J, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology, 2006, 238: 1013-1021
[11]  16 Wu W C, Su M Y, Chang C C, et al. Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology, 2011, 261: 845-853
[12]  17 Artz N S, Sadowski E A, Wentland A L, et al. Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging, 2011, 33: 1414-1421
[13]  18 Lanzman R S, Wittsack H J, Martirosian P, et al. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol, 2010, 20: 1485-1491
[14]  19 Roberts D A, Detre J A, Bolinger L, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology, 1995, 196: 281-286
[15]  20 Stanisz G J, Odrobina E E, Pun J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med, 2005, 54: 507-512
[16]  21 de Bazelaire C M, Duhamel G D, Rofsky N M, et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology, 2004, 230: 652-659
[17]  22 Boss A, Martirosian P, Claussen C D, et al. Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0 T. NMR Biomed, 2006, 19: 125-132
[18]  23 Bonventre J V, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest, 2011, 121: 4210-4221
[19]  24 Edelman R R, Siewert B, Darby D G, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology, 1994, 192: 513-520
[20]  10 Bellomo R, Kellum J A, Ronco C. Acute kidney injury. Lancet, 2012, 380: 756-766
[21]  11 Pedrosa I, Rafatzand K, Robson P, et al. Arterial spin labeling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol, 2012, 22: 484-492
[22]  1 Golestaneh L, Melamed M L, Hostetter T H. Uremic memory: the role of acute kidney injury in long-term outcomes. Kidney Int, 2009, 76: 813-814
[23]  2 Hsu C Y, McCulloch C E, Fan D, et al. Community-based incidence of acute renal failure. Kidney Int, 2007, 72: 208-212
[24]  3 Wald R, Quinn R R, Luo J, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA, 2009, 302: 1179-1185
[25]  4 Valette X, du Cheyron D. A critical appraisal of the accuracy of the RIFLE and AKIN classifications in defining “acute kidney insufficiency” in critically ill patients. J Crit Care, 2012, 28: 116-125
[26]  5 Schrier R W, Wang W. Acute renal failure and sepsis. N Engl J Med, 2004, 351: 159-169
[27]  6 Devarajan P. Biomarkers for the early detection of acute kidney injury. Curr Opin Pedia, 2011, 23: 194-200
[28]  7 Sirota J C, Klawitter J, Edelstein C L. Biomarkers of acute kidney injury. J Toxicol, 2011, 2011: 328120
[29]  8 Ostermann M, Philips B J, Forni L G. Clinical review: biomarkers of acute kidney injury: where are we now? Critical Care, 2012, 16: 233
[30]  9 Vanmassenhove J, Vanholder R, Nagler E, et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transpl, 2012, 28: 254-273

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133