全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HIV复合表位DNA重组体和痘苗病毒疫苗联合免疫实验研究

, PP. 411-420

Keywords: 痘苗病毒天坛株,人免疫缺陷病毒,重组DNA,prime-boost,免疫原性

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用自行构建的包含HIV复合表位重组DNA疫苗(pCCMp24)和重组减毒天坛株痘苗病毒(rddVTT-CCMp24),通过小鼠实验开展免疫原性研究.采用肌肉注射方式于第0和21天分别进行初次(prime)和加强(boost)免疫.根据既定的免疫程序,在加强免疫后10天,通过检测外周血中HIV特异性抗体IgG,IL-2和IL-4水平,分析针对HIV表位肽的淋巴细胞的增殖能力及CD4+/CD8+细胞的比例,监测淋巴细胞分泌IFN-γ的水平,综合评价疫苗的免疫原性.结果显示,pCCMp24,rddVTT-CCMp24单独免疫及pCCMp24/rddVTT-CCMp24prime-boost联合免疫策略均可诱导体液和细胞免疫应答.而且相对于重组DNA单独免疫,pCCMp24/rddVTT-CCMp24联合免疫可诱导较多的CD8+T细胞及IFN-γ分泌细胞产生.而且联合免疫策略也可诱导针对HIV表位肽的细胞免疫记忆的产生.综上表明,rDNA-rddVTT-CCMp24prime-boost免疫策略倾向于诱导较强的细胞免疫应答,尤其是IFN-γ反应,为下一步研究奠定了基础.

References

[1]  27 Gallichan W S, Woolstencroft R N, Guarasci T, et al. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol, 2001, 166: 3451-3457
[2]  28 Belyakov I M, Isakov D, Zhu Q, et al. Enhancement of CD8+ T cell immunity in the lung by CpG oligodeoxynucleotides increases protective efficacy of a modified vaccinia Ankara vaccine against lethal poxvirus infection even in a CD4-deficient host. J Immunol, 2006, 177: 6336-6343
[3]  29 Olvera-Gomez I, Hamilton S E, Xiao Z, et al. Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proc Natl Acad Sci USA, 2012, 109: 2072-2077
[4]  30 Elena Gomez C, Perdiguero B, Garcia-Arriaza J, et al. Poxvirus vectors as HIV/AIDS vaccines in humans. Hum Vaccin Immunother, 2012, 8: 1192-1207
[5]  31 Makitalo B, Lundholm P, Hinkula J, et al. Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen. J Gen Virol, 2004, 85: 2407-2419
[6]  32 Bertley F M, Kozlowski P A, Wang S W, et al. Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. J Immunol, 2004, 172: 3745-3757
[7]  33 Manrique M, Micewicz E, Kozlowski P A, et al. DNA-MVA vaccine protection after X4 SHIV challenge in macaques correlates with day-of-challenge antiviral CD4+ cell-mediated immunity levels and postchallenge preservation of CD4+ T cell memory. AIDS Res Hum Retrov, 2008, 24: 505-519
[8]  34 Sandstrom E, Nilsson C, Hejdeman B, et al. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J Infect Dis, 2008, 198: 1482-1490
[9]  35 Bakari M, Aboud S, Nilsson C, et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine, 2011, 29: 8417-8428
[10]  36 Gorse G J, Newman M J, deCamp A, et al. DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. Clin Vaccine Immunol, 2012, 19: 649-658
[11]  37 Shen Z, Jin H, Li C, et al. Adjuvant effects of dual co-stimulatory molecules on cellular responses to HIV multiple-epitope DNA vaccination. Chem Res Chinese U, 2009, 25: 347-352
[12]  38 杜寿文. HIV复合表位核酸和痘苗病毒载体疫苗构建及免疫原性研究. 硕士学位论文. 长春: 吉林大学, 2012
[13]  39 McBurney S P, Ross T M. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines, 2008, 7: 1405-1417
[14]  40 Hatziioannou T, Ambrose Z, Chung N P, et al. A macaque model of HIV-1 infection. Proc Natl Acad Sci USA, 2009, 106: 4425-4429
[15]  41 Flynn N M, Forthal D N, Harro C D, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis, 2005, 191: 654-665
[16]  42 Schneider J, Gilbert S C, Blanchard T J, et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med, 1998, 4: 397-402
[17]  43 Liu M A. Immunologic basis of vaccine vectors. Immunity, 2010, 33: 504-515
[18]  44 Liu L, Hao Y, Luo Z, et al. Broad HIV-1 neutralizing antibody response induced by heterologous gp140/gp145 DNA prime-vaccinia boost immunization. Vaccine, 2012, 30: 4135-4143
[19]  45 Hel Z, Nacsa J, Tryniszewska E, et al. Containment of simian immunodeficiency virus infection in vaccinated macaques: correlation with the magnitude of virus-specific pre- and postchallenge CD4+ and CD8+ T cell responses. J Immunol, 2002, 169: 4778-4787
[20]  46 Mascola J R, Sambor A, Beaudry K, et al. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviral vectors expressing human immunodeficiency virus type 1 proteins. J Virol, 2005, 79: 771-779
[21]  47 Koup R A, Roederer M, Lamoreaux L, et al. Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS ONE, 2010, 5: e9015
[22]  48 Schell J, Rose N F, Fazo N, et al. Long-term vaccine protection from AIDS and clearance of viral DNA following SHIV89.6P challenge. Vaccine, 2009, 27: 979-986
[23]  49 Shephard E, Burgers W A, van Harmelen J H, et al. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res Hum Retrov, 2008, 24: 207-217
[24]  8 Pitisuttithum P, Gilbert P, Gurwith M, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis, 2006, 194: 1661-1671
[25]  9 Cox J H, Ferrari M G, Earl P, et al. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine, 2012, 30: 1830-1840
[26]  10 Ferrantelli F, Maggiorella M T, Schiavoni I, et al. A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Vaccine, 2011, 29: 2918-2932
[27]  11 Sealy R, Slobod K S, Flynn P, et al. Preclinical and clinical development of a multi-envelope, DNA-virus-protein (D-V-P) HIV-1 vaccine. Int Rev Immunol, 2009, 28: 49-68
[28]  12 Li C, Shen Z, Li X, et al. Protection against SHIV-KB9 infection by combining rDNA and rFPV vaccines based on HIV multiepitope and p24 protein in Chinese rhesus macaques. Clin Dev Immunol, 2012, 2012: 958404
[29]  13 Sundaramurthi J C, Swaminathan S, Hanna L E. Resistance-associated epitopes of HIV-1C-highly probable candidates for a multi-epitope vaccine. Immunogenetics, 2012, 64: 767-772
[30]  14 Kovacs J M, Nkolola J P, Peng H, et al. HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc Natl Acad Sci USA, 2012, 109: 12111-12116
[31]  15 Stephenson K E, SanMiguel A, Simmons N L, et al. Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys. J Virol, 2012, 86: 11434-11440
[32]  16 Lai L, Kwa S F, Kozlowski P A, et al. SIVmac239 MVA vaccine with and without a DNA prime, similar prevention of infection by a repeated dose SIVsmE660 challenge despite different immune responses. Vaccine, 2012, 30: 1737-1745
[33]  17 Goepfert P A, Elizaga M L, Sato A, et al. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis, 2011, 203: 610-619
[34]  18 Saunders K O, Rudicell R S, Nabel G J. The design and evaluation of HIV-1 vaccines. Aids, 2012, 26: 1293-1302
[35]  19 Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med, 2009, 361: 2209-2220
[36]  20 Van Drunen Littel-van den Hurk S, Hannaman D. Electroporation for DNA immunization: clinical application. Expert Rev Vaccines, 2010, 9: 503-517
[37]  21 Graham B S, Koup R A, Roederer M, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis, 2006, 194: 1650-1660
[38]  22 Schadeck E B, Sidhu M, Egan M A, et al. A dose sparing effect by plasmid encoded IL-12 adjuvant on a SIVgag-plasmid DNA vaccine in rhesus macaques. Vaccine, 2006, 24: 4677-4687
[39]  23 Ganguly S, Liu J, Pillai V B, et al. Adjuvantive effects of anti-4-1BB agonist Ab and 4-1BBL DNA for a HIV-1 Gag DNA vaccine: different effects on cellular and humoral immunity. Vaccine, 2010, 28: 1300-1309
[40]  24 Spearman P, Kalams S, Elizaga M, et al. Safety and immunogenicity of a CTL multiepitope peptide vaccine for HIV with or without GM-CSF in a phase I trial. Vaccine, 2009, 27: 243-249
[41]  25 Girard M P, Osmanov S, Assossou O M, et al. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine, 2011, 29: 6191-6218
[42]  26 Oxenius A, Martinic M M, Hengartner H, et al. CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines. J Virol, 1999, 73: 4120-4126
[43]  1 Garcia-Arriaza J, Najera J L, Gomez C E, et al. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS ONE, 2011, 6: e24244
[44]  2 Gomez C E, Perdiguero B, Jimenez V, et al. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLoS ONE, 2012, 7: e35485
[45]  3 Kibler K V, Gomez C E, Perdiguero B, et al. Improved NYVAC-based vaccine vectors. PLoS ONE, 2011, 6: e25674
[46]  4 Hemachandra A, Puls R L, Sirivichayakul S, et al. An HIV-1 clade A/E DNA prime, recombinant fowlpox virus boost vaccine is safe, but non-immunogenic in a randomized phase I/IIa trial in Thai volunteers at low risk of HIV infection. Hum Vaccin, 2010, 6: 835-840
[47]  5 Song Y, Zhang L S, Wang H, et al. Immune responses of mice to prime-boost vaccination with the recombinant DNA and Fowlpox virus both expressing HIV-2 Gag-gp105. Acta Virol, 2010, 54: 293-296
[48]  6 Shiver J W, Fu T M, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 2002, 415: 331-335
[49]  7 D''Souza M P, Frahm N. Adenovirus 5 serotype vector-specific immunity and HIV-1 infection: a tale of T cells and antibodies. AIDS, 2010, 24: 803-809
[50]  50 Esteban M. Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV/AIDS. Hum Vaccin, 2009, 5: 867-871
[51]  51 Boukhebza H, Bellon N, Limacher J M, et al. Therapeutic vaccination to treat chronic infectious diseases: current clinical developments using MVA-based vaccines. Hum Vaccin Immunother, 2012, 8
[52]  52 Garcia F, de Quiros B J C, Gomez C E, et al. Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: a phase I clinical trial (RISVAC02). Vaccine, 2011, 29: 8309-8316

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133