全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Q热血清分析贝氏柯克斯体亚基因组蛋白质芯片和鉴定主要血清反应蛋白

, PP. 397-403

Keywords: 贝氏柯克斯体,蛋白芯片,患者血清,血清学反应,热休克蛋白B

Full-Text   Cite this paper   Add to My Lib

Abstract:

贝氏柯克斯体是Q热的病原菌.为了鉴定贝氏柯克斯体的免疫反应蛋白,本实验室研发了该病原体的亚基因组蛋白芯片.该芯片由101个贝氏柯克斯体的毒力相关重组蛋白构成,用于贝氏柯克斯体感染小鼠血清及Q热患者血清对这些蛋白质做血清学分析.小鼠血清鉴定出16个血清反应阳性蛋白,其中有7个蛋白能够与至少45%的Q热患者发生血清反应.值得注意的是,热休克蛋白B(HspB)与Q热患者和小鼠血清的反应最强,阳性率最高.本研究鉴定出7个主要Q热血清反应蛋白,这些蛋白,特别是HspB是Q热诊断试剂和亚单位疫苗研制的候选靶标.

References

[1]  4 Tigertt W D, Benenson A S, Gochenour W S. Airborne Q fever. Microbiol Mol Biol Rev, 1961, 25: 285-293
[2]  5 Maurin M, Raoult D. Q fever. Clin Microbiol Rev, 1999, 12: 518-553
[3]  6 Zhang G, Samuel J E. Vaccines against Coxiella infection. Expert Rev Vaccines, 2004, 3: 577-584
[4]  7 Marmion B P, Ormsbee R A, Kyrkou M, et al. Vaccine prophylaxis of abattoir-associated Q fever: eight years'' experience in Australian abattoirs. Epidemiol Infect, 1990, 104: 275-287
[5]  8 Scola B L. Current laboratory diagnosis of Q fever. Semin Pediatr Infect Dis, 2002, 13: 257-262
[6]  9 Deringer J R, Chen C, Samuel J E, et al.Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry. Microbiology, 2010, 157: 526-542
[7]  10 Davies D H, Liang X, Hernandez J E, et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci USA, 2005, 102: 547-552
[8]  11 Sharma J, Zhong Y, Dong F, et al. Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 Chlamydial fusion proteins. Infect Immun, 2006, 74: 1490-1499
[9]  12 Sundaresh S, Doolan D L, Hirst S, et al. Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques. Bioinformatics, 2006, 22: 1760-1766
[10]  13 Seshadri R, Paulsen I T, Eisen J A, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA, 2003, 100: 5455-5460
[11]  14 Wen B H, Yu S R, Yu G Q, et al. Analysis of proteins and lipopolysaccharides from Chinese isolates of Coxiella burnetii with monoclonal antibodies. Acta Virol, 1991, 35: 538-544
[12]  15 Stoker M G, Fiset P. Phase variation of the Nine Mile and other strains of Rickettsia burnetii. Can J Microbiol, 1956, 2: 310-321
[13]  16 Li Q, Niu D, Wen B, et al. Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann N Y Acad Sci, 2005, 1063: 130-142
[14]  17 Holzinger A, Phillips K S, Weaver T E. Single-step purification/solubilization of recombinant proteins: application to surfactant protein B. Biotechniques, 1996, 20: 804-806, 808
[15]  18 Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95: 14863-14868
[16]  19 Baldi P, Long A D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics, 2001, 17: 509-519
[17]  20 Cruz-Fisher M I, Cheng C, Sun G, et al. Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice. Infect Immun, 2011, 79: 246-257
[18]  21 Hendrix L R, Samuel J E, Mallavia L P. Identification and cloning of a 27-kDa Coxiella burnetii immunoreactive protein. Ann N Y Acad Sci, 1990, 590: 534-540
[19]  22 Chao C C, Chen H W, Li X, et al. Identification, cloning, and expression of potential diagnostic markers for Q fever. Ann N Y Acad Sci, 2005, 1063: 76-78
[20]  23 Coleman S A, Fischer E R, Cockrell D C, et al. Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun, 2007, 75: 290-298
[21]  24 Deringer J R, Chen C, Samuel J E, et al. Immunoreactive Coxiella burnetii Nine Mile proteins separated by 2D electrophoresis and identified by tandem mass spectrometry. Microbiology, 2011, 157: 526-542
[22]  25 Mestas J, Hughes C C W. Of mice and not men: differences between mouse and human Immunology. J Immunol, 2004, 172: 2731-2738
[23]  26 Xiong X, Wang X, Wen B, et al. Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. BMC Microbiology, 2012, 12: 35
[24]  27 Beare P A, Chen C, Bouman T, et al. Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol, 2008, 15: 1771-1779
[25]  28 Vigil A, Chen C, Jain A, et al. Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics, 2011, 10: M110.006304
[26]  29 Fernandez R C, Logan S M, Lee S H, et al. Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun, 1996, 64: 1968-1976
[27]  30 Garduno R A, Garduno E, Hoffman P S. Surface-associated Hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun, 1998, 66: 4602-4610
[28]  31 Vodkin M H, Williams J C. A heat shock operon in Coxiella burnetti produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli. J Bacteriol, 1988, 170: 1227-1234
[29]  32 Fernandes I, Rousset E, Dufour P, et al. Evaluation of the recombinant heat shock protein B (HspB) of Coxiella burnetii as a potential antigen for immunodiagnostic of Q fever in goats. Vet Microbiol, 2009, 134: 300-304
[30]  33 Voth D E, Howe D, Beare P A, et al. The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol, 2009, 191: 4232-4242
[31]  34 Farr S B, Arnosti D N, Chamberlin M J, et al. An apaH mutation causes appppA to accumulate and affects motility and catabolite repression in Escherichia coli. Proc Natl Acad Sci USA, 1989, 86: 5010-5014
[32]  35 Ismail T M, Hart C A, McLennan A G. Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J Biol Chem, 2003, 278: 32602-32607
[33]  36 Farris M, Grant A, Richardson T B, et al. BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol Microbiol, 1998, 28: 265-279
[34]  37 Cirillo S L G, Lum J, Cirillo J D. Identification of novel loci involved in entry by Legionella pneumophila. Microbiology, 2000, 146: 1345-1359
[35]  1 Heinzen R A, Hackstadt T, Samuel J E. Developmental biology of Coxiella burnettii. Trends Microbiol, 1999, 7: 149-154
[36]  2 Zamboni D S, Mortara R A, Freymuller E, et al. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase Ⅱ. Microbes Infect, 2002, 4: 591-598
[37]  3 Omsland A, Cockrell D C, Howe D, et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA, 2009, 106: 4430-4434

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133