全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新型水稻缺铁诱导基因OsDPR的过量表达抑制植物生长

, PP. 332-341

Keywords: OsDPR,铁缺乏,生长抑制,细胞分裂,CyclinD2.1

Full-Text   Cite this paper   Add to My Lib

Abstract:

对缺铁诱导5天的水稻根进行转录水平的芯片分析时,检测到1个在缺铁条件下高表达的转录本.通过生物信息学方法分析并确定了该基因的序列,经数据库检索未发现与其相似的蛋白.作为一个功能未知的新基因,本课题组根据它的侏儒表型命名它为OsDPR(dwarfphenotype-relatedgene).本文首先构建了植物表达载体pCAMBIA1302-OsDPR::GFP,对烟草和水稻进行基因转化.通过表型观察发现OsDPR抑制了转基因植株的生长.为探索该抑制作用的机制,观察比较了转基因和野生型植株细胞的大小以及两种基因型细胞的数量.结果显示,转基因BY-2悬浮细胞增长速度与野生型相比明显降低,但细胞大小并未受到影响.此外,参与植物生长调控的细胞分裂相关基因CyclinD2.1在转基因烟草植株中表达下调.上述结果说明,作为一个受铁调控的新基因,OsDPR通过影响细胞分裂抑制了转基因植物的生长.

References

[1]  1 Guerinot M L, Yi Y. Iron--nutritious, noxious, and not readily available. Plant Physiol, 1994, 104: 815-820
[2]  2 Jia L Q, Wu Z C, Hao X, et al. Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa. New Phytol, 2011, 189: 843-855
[3]  3 Grotz N, Guerinot M L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. BBA-Mol Cell Res, 2006, 1763: 595-608
[4]  4 Morrissey J, Baxter I R, Lee J H, et al. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell, 2009, 21: 3326-3338
[5]  5 Ogo Y, Kobayashi T, Itai R N, et al. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem, 2008, 283: 13407-13417
[6]  6 Walker E L, Connolly E L. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol, 2008, 11: 530-535
[7]  7 Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996, 93: 5624-5628
[8]  8 Yang G, Ma F, Wang Y, et al. Vesicle-related OsSEC27P enhances H+ secretion in the iron deficient transgenic tobacco root. Chin Sci Bull, 2010, 55: 3298-3304
[9]  9 印莉萍, 孙彤, 李伟, 等. 缺铁诱导的水稻根转录本组和蛋白质组分析与膜泡运输. 自然科学进展, 2004, 2: 522-527
[10]  10 Ding L, Jing H W, Qin B, et al. Regulation of cell division and growth in roots of Lactuca sativa L. seedlings by the ent-kaurene diterpenoid rabdosin B. J Chem Ecol, 2010, 36: 553-563
[11]  11 Laemmli U K. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature, 1970, 227: 680-685
[12]  12 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA, 1979, 76: 4350-4354
[13]  13 Dahan Y, Rosenfeld R, Zadiranov V, et al. A proposed conserved role for an avocado fw2.2-like gene as a negative regulator of fruit cell division. Planta, 2010, 232: 663-676
[14]  14 Hu Z B, Qin Z X, Wang M, et al. The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. Plant J, 2010, 61: 600-610
[15]  15 Gutierrez C, Ramirez-Parra E, Castellano M M, et al. G1 to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol, 2002, 5: 480-486
[16]  16 den Boer B G W, Murray J A H. Triggering the cell cycle in plants. Trends Cell Biol, 2000, 10: 245-250
[17]  17 Cockcroft C E, den Boer B G W, Sandra Healy J M, et al. CyclinD control of growth rate in plants. Nature, 2000, 405: 575-579
[18]  18 Wang X. Functional analysis of TaRAN1, a small GTP-binding protein during cell cycle and development in plant. Dissertation for Doctoral Degree. Beijing: Institute of Botany, Chinese Academy of Sciences, 2004
[19]  19 Balch C, Yan P, Craft T, et al. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol Cancer Ther, 2005, 4: 1505-1514

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133