1 Scully T. Diabetes in numbers. Nature, 2012, 485: S2-S3
[2]
2 van Belle T L, Coppieters K T, von Herrath M G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev, 2011, 91: 79-118
[3]
3 Luan B, Zhao J, Wu H, et al. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature, 2009, 457: 1146-1149
[4]
4 Nathan D M, Cleary P A, Backlund J Y, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med, 2005, 353: 2643-2653
[5]
5 Berney T, Johnson P R. Donor pancreata: evolving approaches to organ allocation for whole pancreas versus islet transplantation. Transplantation, 2010, 90: 238-243
[6]
6 Fridell J A, Rogers J, Stratta R J. The pancreas allograft donor: current status, controversies, and challenges for the future. Clin Transplant, 2010, 24: 433-449
[7]
7 Vardanyan M, Parkin E, Gruessner C, et al. Pancreas vs. islet transplantation: a call on the future. Curr Opin Organ Transplant, 2010, 15: 124-130
[8]
8 Shapiro A M, Lakey J R, Ryan E A, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med, 2000, 343: 230-238
[9]
9 Kroon E, Martinson L A, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol, 2008, 26: 443-452
[10]
10 Chen S, Borowiak M, Fox J L, et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol, 2009, 5: 258-265
[11]
11 Alipio Z, Liao W, Roemer E J, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci USA, 2010, 107: 13426-13431
[12]
22 Bonner-Weir S, Baxter L A, Schuppin G T, et al. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes, 1993, 42: 1715-1720
[13]
23 Xu X, D''Hoker J, Stange G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 2008, 132: 197-207
[14]
24 Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA, 2008, 105: 19915-19919
[15]
25 Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet, 2011, 43: 34-41
[16]
26 Solar M, Cardalda C, Houbracken I, et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell, 2009, 17: 849-860
[17]
27 Bonner-Weir S, Li W C, Ouziel-Yahalom L, et al. Beta-cell growth and regeneration: replication is only part of the story. Diabetes, 2010, 59: 2340-2348
[18]
28 Brennand K, Huangfu D, Melton D. All beta cells contribute equally to islet growth and maintenance. PLoS Biol, 2007, 5: e163
[19]
29 Huising M O, van der Meulen T, Vaughan J M, et al. CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proc Natl Acad Sci USA, 2010, 107: 912-917
[20]
30 Baeyens L, De Breuck S, Lardon J, et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia, 2005, 48: 49-57
[21]
31 Mfopou J K, Chen B, Sui L, et al. Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes, 2010, 59: 2094-2101
[22]
32 Brolen G K, Heins N, Edsbagge J, et al. Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing beta-cell-like cells. Diabetes, 2005, 54: 2867-2874
[23]
33 Kahan B W, Jacobson L M, Hullett D A, et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes, 2003, 52: 2016-2024
[24]
34 D’Amour K A, Bang A G, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol, 2006, 24: 1392-1401
[25]
35 Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322: 945-949
[26]
36 Golestaneh N, Kokkinaki M, Pant D, et al. Pluripotent stem cells derived from adult human testes. Stem Cells Dev, 2009, 18: 1115-1126
[27]
37 Pileggi A. Mesenchymal stem cells for the treatment of diabetes. Diabetes, 2012, 61: 1355-1356
[28]
38 Moore R F. Utility of mesenchymal stem cell thetapy in type 1 diabetes. Stem Cell Cancer Stem Cell, 2012, 6: 197-203
[29]
39 Urban V S, Kiss J, Kovacs J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells, 2008, 26: 244-253
[30]
40 Ding Y, Xu D, Feng G, et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes, 2009, 58: 1797-1806
[31]
41 Zaret K S, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science, 2008, 322: 1490-1494
[32]
42 Ber I, Shternhall K, Perl S, et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem, 2003, 278: 31950-31957
[33]
43 Yang L J. Liver stem cell-derived beta-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev, 2006, 5: 409-413
[34]
44 Tang D Q, Wang Q, Burkhardt B R, et al. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells, 2012, 1: 114-127
[35]
45 Vajdic C M, van Leeuwen M T. Cancer incidence and risk factors after solid organ transplantation. Int J Cancer, 2009, 125: 1747-1754
[36]
46 Halban P A, German M S, Kahn S E, et al. Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab, 2010, 95: 1034-1043
[37]
12 Bar-Nur O, Russ H A, Efrat S, et al. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 2011, 9: 17-23
[38]
13 Cardinale V, Wang Y, Carpino G, et al. The biliary tree--a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol, 2012, 9: 231-240
[39]
14 Liu J, Liu Y, Wang H, et al. Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci Rep, 2013, 3: 1185
[40]
15 Yechoor V, Liu V, Espiritu C, et al. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell, 2009, 16: 358-373
[41]
16 Wang R N, Kloppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia, 1995, 38: 1405-1411
[42]
17 Smukler S R, Arntfield M E, Razavi R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell, 2011, 8: 281-293
[43]
18 Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 2008, 455: 627-632
[44]
19 Ho J H, Tseng T C, Ma W H, et al. Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell Transplant, 2012, 21: 997-1009
[45]
20 Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol, 2003, 21: 763-770
[46]
21 Kim S J, Choi Y S, Ko E S, et al. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng, 2012, 113: 771-777