全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生物医学领域本体的构建、评估与应用

DOI: 10.1360/052012-292, PP. 223-239

Keywords: 本体论,生物医学本体,数据库构建,文本挖掘,生物信息学

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了本体的概念和基本特点,总结了领域本体的一般构建流程和评估方法,并举例说明了生物医学领域本体在生物学对象注释、富集分析、数据整合、数据库构建、图书馆建设、文本挖掘等方面的实际应用情况,整理了目前常用的生物医学领域本体数据库、本体描述语言和本体编辑软件,最后探讨了目前生物医学领域本体研究中普遍存在的问题和该领域未来的发展方向.

References

[1]  1 Bard J B, Rhee S Y. Ontologies in biology: design, applications and future challenges. Nat Rev Genet, 2004, 5: 213-222
[2]  2 田云, 卢向阳. 生物信息学. 生物学杂志, 2002, 19: 11-12
[3]  3 李健康, 张春辉. 本体研究及其应用进展. 图书馆论坛, 2004, 24: 80-86
[4]  4 Hill D P, Berardini T Z, Howe D G, et al. Representing ontogeny through ontology: a developmental biologist''s guide to the gene ontology. Mol Reprod Dev, 2009, 77: 314-329
[5]  5 Rhee S Y, Wood V, Dolinski K, et al. Use and misuse of the gene ontology annotations. Nat Rev Genet, 2008, 9: 509-515
[6]  6 Schriml L M, Arze C, Nadendla S, et al. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res, 2011, 40: D940-946
[7]  7 Segerdell E, Bowes J B, Pollet N, et al. An ontology for Xenopus anatomy and development. BMC Dev Biol, 2008, 8: 92
[8]  8 Rothwell D, Fritz A. SNOMED microcomputer software system. Pathologist, 1983, 37: 15-18
[9]  9 Lindberg D A, Humphreys B L, McCray A T. The Unified Medical Language System. Methods Inf Med, 1993, 32: 281-291
[10]  10 夏燕, 张忠平, 曹顺良, 等. Gene Ontology在生物数据整合中的应用. 计算机工程, 2005, 31: 57-58
[11]  11 Stein L D. Integrating biological databases. Nat Rev Genet, 2003, 4: 337-345
[12]  12 李勇, 张志刚. 领域本体构建方法研究. 计算机工程与科学, 2008, 30: 129-131
[13]  13 Yu A C. Methods in biomedical ontology. J Biomed Inform, 2006, 39: 252-266
[14]  14 Smith B, Ceusters W, Klagges B, et al. Relations in biomedical ontologies. Genome Biol, 2005, 6: R46
[15]  15 Lovering R C, Dimmer E C, Talmud P J. Improvements to cardiovascular gene ontology. Atherosclerosis, 2009, 205: 9-14
[16]  16 Torto-Alalibo T, Collmer C W, Gwinn-Giglio M, et al. Unifying themes in microbial associations with animal and plant hosts described using the gene ontology. Microbiol Mol Biol Rev, 2010, 74: 479-503
[17]  17 McCarthy F M, Mahony T J, Parcells M S, et al. Understanding animal viruses using the Gene Ontology. Trends Microbiol, 2009, 17: 328-335
[18]  18 Giglio M G, Collmer C W, Lomax J, et al. Applying the Gene Ontology in microbial annotation. Trends Microbiol, 2009, 17: 262-268
[19]  19 宋丹辉. 本体评价研究综述. 情报理论与实践, 2011, 34: 118-122
[20]  20 Ivchenko O, Younesi E, Shahid M, et al. PLIO: an ontology for formal description of protein-ligand interactions. Bioinformatics, 2011, 27: 1684-1690
[21]  21 孙坦, 宋丹辉. 本体模型中的错误类型及检测方法. 图书情报工作, 2011, 55: 84-89
[22]  22 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
[23]  23 Bresell A, Servenius B, Persson B. Ontology annotation treebrowser : an interactive tool where the complementarity of medical subject headings and gene ontology improves the interpretation of gene lists. Appl Bioinformatics, 2006, 5: 225-236
[24]  24 Dwight S S, Harris M A, Dolinski K, et al. Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res, 2002, 30: 69-72
[25]  25 Aslett M, Wood V. Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast, 2006, 23: 913-919
[26]  26 Arnaud M B, Costanzo M C, Shah P, et al. Gene Ontology and the annotation of pathogen genomes: the case of Candida albicans. Trends Microbiol, 2009, 17: 295-303
[27]  27 Torto-Alalibo T, Meng S, Dean R A. Infection strategies of filamentous microbes described with the Gene Ontology. Trends Microbiol, 2009, 17: 320-327
[28]  28 Hu J C, Karp P D, Keseler I M, et al. What we can learn about Escherichia coli through application of Gene Ontology. Trends Microbiol, 2009, 17: 269-278
[29]  29 Meng S, Brown D E, Ebbole D J, et al. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae. BMC Microbiol, 2009, 9: S8
[30]  30 Camon E, Magrane M, Barrell D, et al. The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res, 2003, 13: 662-672
[31]  31 Xie H, Wasserman A, Levine Z, et al. Large-scale protein annotation through gene ontology. Genome Res, 2002, 12: 785-794
[32]  32 Arciero C, Somiari S B, Shriver C D, et al. Functional relationship and gene ontology classification of breast cancer biomarkers. Int J Biol Markers, 2003, 18: 241-272
[33]  33 Lu X, Zhai C, Gopalakrishnan V, et al. Automatic annotation of protein motif function with Gene Ontology terms. BMC Bioinformatics, 2004, 5: 122
[34]  34 Hennig S, Groth D, Lehrach H. Automated Gene Ontology annotation for anonymous sequence data. Nucleic Acids Res, 2003, 31: 3712-3715
[35]  35 Groth D, Lehrach H, Hennig S. GOblet: a platform for Gene Ontology annotation of anonymous sequence data. Nucleic Acids Res, 2004, 32: W313-317
[36]  36 Zhong S, Li C, Wong W H. ChipInfo: Software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res, 2003, 31: 3483-3486
[37]  37 Wolting C, McGlade C J, Tritchler D. Cluster analysis of protein array results via similarity of Gene Ontology annotation. BMC Bioinformatics, 2006, 7: 338
[38]  38 Muro E M, Perez-Iratxeta C, Andrade-Navarro M A. Amplification of the Gene Ontology annotation of Affymetrix probe sets. BMC Bioinformatics, 2006, 7: 159
[39]  39 Ochs M F, Peterson A J, Kossenkov A, et al. Incorporation of gene ontology annotations to enhance microarray data analysis. Methods Mol Biol, 2007, 377: 243-254
[40]  40 Daraselia N, Yuryev A, Egorov S, et al. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks. BMC Bioinformatics, 2007, 8: 243
[41]  41 Nguyen C D, Gardiner K J, Cios K J. Protein annotation from protein interaction networks and Gene Ontology. J Biomed Inform, 2011, 44: 824-829
[42]  42 Chibucos M C, Collmer C W, Torto-Alalibo T, et al. Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiol, 2009, 9: S5
[43]  43 Torto-Alalibo T, Collmer C W, Lindeberg M, et al. Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the Gene Ontology. BMC Microbiol, 2009, 9: S3
[44]  44 Lovering R C, Camon E B, Blake J A, et al. Access to immunology through the Gene Ontology. Immunology, 2008, 125: 154-160
[45]  45 Wiwanitkit V. Interaction between leptin and leptin receptor in gastric carcinoma: gene ontology analysis. Rev Esp Enferm Dig, 2007, 99: 201-205
[46]  46 Harhay G P, Keele J W. Positional candidate gene selection from livestock EST databases using Gene Ontology. Bioinformatics, 2003, 19: 249-255
[47]  47 del Pozo A, Pazos F, Valencia A. Defining functional distances over gene ontology. BMC Bioinformatics, 2008, 9: 50
[48]  48 Wang H, Azuaje F, Bodenreider O, et al. Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In: Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2004. 25-31
[49]  49 Min H, Manion F J, Goralczyk E, et al. Integration of prostate cancer clinical data using an ontology. J Biomed Inform, 2009, 42: 1035-1045
[50]  50 Odicino F, Pecorelli S, Zigliani L, et al. History of the FIGO cancer staging system. Int J Gynaecol Obstet, 2008, 101: 205-210
[51]  51 Fleming I D. AJCC/TNM cancer staging, present and future. J Surg Oncol, 2001, 77: 233-236
[52]  52 常青. 文本挖掘: 挖掘知识. 中国计算机用户, 2004, 24: 49-50
[53]  53 黄凯峰, 何洁月. 基于生物医学文献的知识发现研究. 计算机技术与发展, 2008, 2: 62-65
[54]  54 Ruch P G A, Gobeill J, Lisacek F, et al. Using discourse analysis to improve text categorization in MEDLINE. Stud Health Technol Inform, 2007, 129: 710-715
[55]  55 Wee L J, Er E P, Ng L F, et al. In silico prediction of the granzyme B degradome. BMC Genomics, 2012, 12: S11
[56]  56 Lu Z, Kao H Y, Wei C H, et al. The gene normalization task in BioCreative III. BMC Bioinformatics, 2011, 12: S2
[57]  57 Arighi C N, Roberts P M, Agarwal S, et al. BioCreative III interactive task: an overview. BMC Bioinformatics, 2011, 12: S4
[58]  58 Arighi C N, Lu Z, Krallinger M, et al. Overview of the BioCreative III Workshop. BMC Bioinformatics, 2011, 12: S1
[59]  59 Campos D, Matos S, Lewin I, et al. Harmonisation of gene/protein annotations: towards a gold standard MEDLINE. Bioinformatics, 2012, 28: 1253-1261
[60]  60 Krallinger M, Leitner F, Vazquez M, et al. How to link ontologies and protein-protein interactions to literature: text-mining approaches and the BioCreative experience. Database (Oxford), 2012, bas017
[61]  61 Chatr-Aryamontri A, Winter A, Perfetto L, et al. Benchmarking of the 2010 BioCreative Challenge III text-mining competition by the BioGRID and MINT interaction databases. BMC Bioinformatics, 2011, 12: S8
[62]  62 Campbell S J, Gaulton A, Marshall J, et al. Visualizing the drug target landscape. Drug Discov Today, 2011, 17: S3-15
[63]  63 Wu Y, Liu M, Zheng W J, et al. Ranking gene-drug relationships in biomedical literature using latent dirichlet allocation. Pac Symp Biocomput, 2012, 422-433
[64]  64 Faro A, Giordano D, Spampinato C. Combining literature text mining with microarray data: advances for system biology modeling. Brief Bioinform, 2011, 13: 61-82
[65]  65 Yu W, Clyne M, Dolan S M, et al. GAPscreener: an automatic tool for screening human genetic association literature in PubMed using the support vector machine technique. BMC Bioinformatics, 2008, 9: 205
[66]  66 Guo Y, Korhonen A, Silins I, et al. Weakly supervised learning of information structure of scientific abstracts—is it accurate enough to benefit real-world tasks in biomedicine? Bioinformatics, 2011, 27: 3179-3185
[67]  67 Settles B. ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics, 2005, 21: 3191-3192
[68]  68 Hakenberg J, Gerner M, Haeussler M, et al. The GNAT library for local and remote gene mention normalization. Bioinformatics, 2011, 27: 2769-2771
[69]  69 Yeganova L, Smith L, Wilbur W J. Identification of related gene/protein names based on an HMM of name variations. Comput Biol Chem, 2004, 28: 97-107
[70]  70 Ohta T, Pyysalo S, Kim J D, et al. A re-evaluation of biomedical named entity-term relations. J Bioinform Comput Biol, 2010, 8: 917-928
[71]  71 Cano C, Monaghan T, Blanco A, et al. Collaborative text-annotation resource for disease-centered relation extraction from biomedical text. J Biomed Inform, 2009, 42: 967-977
[72]  72 Rosse C, Mejino J L Jr. A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform, 2003, 36: 478-500
[73]  73 Fragoso G, de Coronado S, Haber M, et al. Overview and utilization of the NCI thesaurus. Comp Funct Genomics, 2004, 5: 648-654
[74]  74 Nakai T, Bagarinao E, Tanaka Y, et al. Ontology for FMRI as a biomedical informatics method. Magn Reson Med Sci, 2008, 7: 141-155
[75]  75 Alterovitz G, Xiang M, Mohan M, et al. GO PaD: the Gene Ontology Partition Database. Nucleic Acids Res, 2007, 35: D322-327
[76]  76 Natale D A, Arighi C N, Barker W C, et al. Framework for a protein ontology. BMC Bioinformatics, 2007, 8: S1
[77]  77 Natale D A, Arighi C N, Barker W C, et al. The Protein Ontology: a structured representation of protein forms and complexes. Nucleic Acids Res, 2010, 39: D539-545
[78]  78 Bult C J, Drabkin H J, Evsikov A, et al. The representation of protein complexes in the Protein Ontology (PRO). BMC Bioinformatics, 2011, 12: 371
[79]  79 Eilbeck K, Lewis S E, Mungall C J, et al. The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol, 2005, 6: R44
[80]  80 Mungall C J, Batchelor C, Eilbeck K. Evolution of the Sequence Ontology terms and relationships. J Biomed Inform, 2010, 44: 87-93
[81]  81 Moore B, Fan G, Eilbeck K. SOBA: sequence ontology bioinformatics analysis. Nucleic Acids Res, 2010, 38: W161-164
[82]  82 Laulederkind S J, Tutaj M, Shimoyama M, et al. Ontology searching and browsing at the Rat Genome Database. Database (Oxford), 2012, bas016
[83]  83 Du P, Feng G, Flatow J, et al. From disease ontology to disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations. Bioinformatics, 2009, 25: i63-68
[84]  84 Osborne J D, Flatow J, Holko M, et al. Annotating the human genome with Disease Ontology. BMC Genomics, 2009, 10: S6
[85]  85 Li J, Gong B, Chen X, et al. DOSim: an R package for similarity between diseases based on Disease Ontology. BMC Bioinformatics, 2011, 12: 266
[86]  86 LePendu P, Musen M A, Shah N H. Enabling enrichment analysis with the Human Disease Ontology. J Biomed Inform, 2011, 44: S31-38
[87]  87 Robinson P N, Mundlos S. The human phenotype ontology. Clin Genet, 2010, 77: 525-534
[88]  97 Bard J, Rhee S Y, Ashburner M. An ontology for cell types. Genome Biol, 2005, 6: R21
[89]  98 Meehan T F, Masci A M, Abdulla A, et al. Logical development of the cell ontology. BMC Bioinformatics, 2011, 12: 6
[90]  99 Masci A M, Arighi C N, Diehl A D, et al. An improved ontological representation of dendritic cells as a paradigm for all cell types. BMC Bioinformatics, 2009, 10: 70
[91]  100 Diehl A D, Augustine A D, Blake J A, et al. Hematopoietic cell types: prototype for a revised cell ontology. J Biomed Inform, 2010, 44: 75-79
[92]  101 de Coronado S, Haber M W, Sioutos N, et al. NCI Thesaurus: using science-based terminology to integrate cancer research results. Stud Health Technol Inform, 2004, 107: 33-37
[93]  102 Shah N H, Rubin D L, Espinosa I, et al. Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics, 2007, 8: 296
[94]  103 Marquet G, Dameron O, Saikali S, et al. Grading glioma tumors using OWL-DL and NCI Thesaurus. AMIA Annu Symp Proc, 2007, 508-512
[95]  104 Brochhausen M, Weiler G, Cocos C, et al. The ACGT Master Ontology on cancer—a new terminology source for oncological practice. IEEE Comput Soc, 2008, 324-329
[96]  105 Brochhausen M, Spear A D, Cocos C, et al. The ACGT Master Ontology and its applications—towards an ontology-driven cancer research and management system. J Biomed Inform, 2010, 44: 8-25
[97]  106 Stoeckert C J Jr., Parkinson H. The MGED ontology: a framework for describing functional genomics experiments. Comp Funct Genomics, 2003, 4: 127-132
[98]  107 Whetzel P L, Parkinson H, Causton H C, et al. The MGED Ontology: a resource for semantics-based description of microarray experiments. Bioinformatics, 2006, 22: 866-873
[99]  108 Whetzel P L, Parkinson H, Stoeckert C J Jr. Using ontologies to annotate microarray experiments. Methods Enzymol, 2006, 411: 325-339
[100]  109 Zheng J, Stoyanovich J, Manduchi E, et al. AnnotCompute: annotation-based exploration and meta-analysis of genomics experiments. Database (Oxford), 2011, bar045
[101]  110 Brinkley J F, Rosse C. The Digital Anatomist distributed framework and its applications to knowledge-based medical imaging. J Am Med Inform Assoc, 1997, 4: 165-183
[102]  111 Dameron O, Rubin D L, Musen M A. Challenges in converting frame-based ontology into OWL: the Foundational Model of Anatomy case-study. AMIA Annu Symp Proc, 2005, 181-185
[103]  112 Hunter A, Kaufman M H, McKay A, et al. An ontology of human developmental anatomy. J Anat, 2003, 203: 347-355
[104]  113 Noe A, Lockett E, Sweet D A. Use and evaluation of the World Wide Web as a tool to explore the human developmental anatomy center. Comput Med Imaging Graph, 1999, 23: 41-44
[105]  114 Hayamizu T F, Mangan M, Corradi J P, et al. The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol, 2005, 6: R29
[106]  115 Sundberg J P, Sundberg B A, Schofield P. Integrating mouse anatomy and pathology ontologies into a phenotyping database: tools for data capture and training. Mamm Genome, 2008, 19: 413-419
[107]  116 Bowes J B, Snyder K A, Segerdell E, et al. Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res, 2008, 36: D761-767
[108]  117 Belmamoune M, Verbeek F J. Data integration for spatio-temporal patterns of gene expression of zebrafish development: the GEMS database. J Integr Bioinform, 2008, 5: 92
[109]  118 Degtyarenko K, de Matos P, Ennis M, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res, 2008, 36: D344-350
[110]  119 de Matos P, Alcantara R, Dekker A, et al. Chemical Entities of Biological Interest: an update. Nucleic Acids Res, 2009, 38: D249-254
[111]  120 Degtyarenko K, Hastings J, de Matos P, et al. ChEBI: an open bioinformatics and cheminformatics resource. Curr Protoc Bioinformatics, 2009, doi: 10.1002/0471250953.bi1409s26
[112]  121 Wohlgemuth G, Haldiya P K, Willighagen E, et al. The Chemical Translation Service--a web-based tool to improve standardization of metabolomic reports. Bioinformatics, 2010, 26: 2647-2648
[113]  122 d''Aquin M, Noy N F. Where to publish and find ontologies? A survey of ontology libraries. Web Semant, 2012, 11: 96-111
[114]  123 Noy N F, Shah N H, Whetzel P L, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res, 2009, 37: W170-173
[115]  124 Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol, 2007, 25: 1251-1255
[116]  125 Cote R G, Jones P, Martens L, et al. The Ontology Lookup Service: more data and better tools for controlled vocabulary queries. Nucleic Acids Res, 2008, 36: W372-376
[117]  126 Cote R, Reisinger F, Martens L, et al. The Ontology Lookup Service: bigger and better. Nucleic Acids Res, 2010, 38: W155-160
[118]  127 Aitken S, Korf R, Webber B, et al. COBrA: a bio-ontology editor. Bioinformatics, 2005, 21: 825-826
[119]  128 Liu K, Hogan W R, Crowley R S. Natural Language Processing methods and systems for biomedical ontology learning. J Biomed Inform, 2011, 44: 163-179
[120]  95 Jaiswal P, Avraham S, Ilic K, et al. Plant Ontology (PO): a controlled vocabulary of plant structures and growth stages. Comp Funct Genomics, 2005, 6: 388-397
[121]  96 Avraham S, Tung C W, Ilic K, et al. The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Res, 2008, 36: D449-454
[122]  88 Robinson P N, Kohler S, Bauer S, et al. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet, 2008, 83: 610-615
[123]  89 Kohler S, Schulz M H, Krawitz P, et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet, 2009, 85: 457-464
[124]  90 Smith C L, Goldsmith C A, Eppig J T. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol, 2005, 6: R7
[125]  91 Smith C L, Eppig J T. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med, 2009, 1: 390-399
[126]  92 Bult C J, Kadin J A, Richardson J E, et al. The Mouse Genome Database: enhancements and updates. Nucleic Acids Res, 2009, 38: D586-592
[127]  93 Zhang Y, De S, Garner J R, et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Med Genomics, 2010, 3: 1
[128]  94 Consortium P O. The Plant Ontology Consortium and plant ontologies. Comp Funct Genomics, 2002, 3: 137-142

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133