全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

顿悟类问题解决中思维僵局的动态时间特性

DOI: 10.1360/05SCLS-2012-0077.R3, PP. 254-262

Keywords: 顿悟问题解决,元认知,思维僵局,事件相关电位,P200

Full-Text   Cite this paper   Add to My Lib

Abstract:

顿悟问题的核心特征在于思维僵局,即解题者主观上不知如何推进解题进程的心理状态.尽管对顿悟问题解决的神经机制已有较多研究,却很少有研究对顿悟问题解决过程中思维僵局的时间进程进行探讨.本研究运用高时间分辨率脑事件相关电位技术(ERP)对顿悟问题解决过程中思维僵局的动态时间进程进行了考察,实验记录了有思维僵局和无思维僵局问题的锁时事件相关电位,其中,问题类型是根据被试的有无遭遇思维僵局的主观反应确定的.研究显示,早期的散布在额中央区的P2成分主要与思维僵局前意识性的元认知觉察有关,P3a主要与思维僵局所引发的注意聚焦有关.这些结果表明,思维僵局虽在晚期才完全形成,但在一个相对较早的阶段就已经启动,此外元认知在顿悟问题解题过程中思维僵局的监控方面扮演重要作用.

References

[1]  32 Chen A, Luo Y, Wang Q, et al. Electrophysiological correlates of category induction: PSW amplitude as an index of identifying shared attributes. Biol Psychol, 2007, 76: 230-238
[2]  33 Pauli P, Lutzenberger W, Birbaumer N, et al. Neurophysiological correlates of mental arithmetic. Psychophysiology, 1996, 33: 522-529
[3]  34 Nikolaev A R, Ziessler M, Dimova K, et al. Anticipated action consequences as a nexus between action and perception: evidence from event-related potentials. Biol Psychol, 2008, 78: 53-65
[4]  35 Luo J, Niki K, Phillips S. The function of the anterior cingulate cortex(ACC) in the insightful solving of puzzles: the ACC is activated less when the structure of the puzzle is known. J Psychol Chin Soc, 2004, 5: 195-213
[5]  36 Luo J, Niki K, Phillips S. Neural correlates of the “Aha! reaction”. Neuroreport, 2004, 15: 2013-2017
[6]  37 Friedman D, Cycowicz Y M, Gaeta H. The novelty P3: an event-related potential(ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev, 2001, 25: 355-373
[7]  38 Restuccia D, Marca G D, Marra C, et al. Attentional load of the primary task influences the frontal but not the temporal generators of mismatch negativity. Brain Res, 2005, 25: 891-899
[8]  39 Halgren E, Marinkovic K, Chauvel P. Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroenceph clin Neurophysiol, 1998, 106: 156-164
[9]  40 Carretié L, Hinojosa J A, Martín-Loeches M, et al. Automatic attention to emotional stimuli: neural correlates. Hum Brain Mapp, 2004, 22: 290-299
[10]  41 Awh E, Vogel E K, Oh S H. Interactions between attention and working memory. Neuroscience, 2006, 139: 201-208
[11]  42 Thomas L, Lleras A. Covert shifts of attention function as an implicit aid to insight. Cognition, 2009, 111: 168-174
[12]  43 Bilali? M, McLeod P, Gobet F. Why good thoughts block better ones: the mechanism of the pernicious Einstellung (set) effect. Cognition, 208, 108: 652-661
[13]  11 Qiu J, Li H, Yang D, et al. The neural basis of insight problem solving: an event-related potential study. Brain Cogn, 2008, 68: 100-106
[14]  12 Knoblich G, Ohlsson S, Raney G. An eye movement study of insight problem solving. Mem Cogn, 2001, 29: 1000-1009
[15]  13 Knoblich G, Ohlsson S, Haider H, et al. Constraint relaxation and chunk decomposition in insight problem solving. J Exp Psychol Learn Mem Cogn, 1999, 25: 1534-1555
[16]  14 Ollinger M, Jones G, Knoblich G. Investigating the effect of mental set on insight problem solving. Exp Psychol, 2008, 55: 269-282
[17]  15 Chrysikou E G, Weisberg R W. Following the wrong footsteps: fixation effects of pictorial examples in a design problem-solving task. J Exp Psychol Learn Mem Cogn, 2005, 31: 1134-1148
[18]  16 Sandkühler S, Bhattacharya J. Deconstructing insight: EEG correlates of insightful problem solving. PLoS ONE, 2008, 3: e1459
[19]  17 Rushby J A, Barry R J, Doherty R J. Separation of the components of the late positive complex in an ERP dishabituation paradigm. Clin Neurophysiol, 2005, 116: 2363-2380
[20]  18 Paynter C A, Kieffaber P D, Reder L M. Problem-solving without awareness: an ERP investigation. Neuropsychologia, 2010, 48: 3137-3144
[21]  19 Reder L M, Ritter F. What determines initial feeling of knowing? Familiarity with question terms, not with the answer. J Exp Psychol Learn Mem Cogn, 1992, 18: 435-451
[22]  20 Paynter C A, Reder L M, Kotovsky K. Knowing we know before we know: ERP correlates of initial feeling-of-knowing. Neuropsychologia, 2009, 47: 796-803
[23]  21 Ryals A J, Yadon C A, Nomi J S, et al. When word identification fails: ERP correlates of recognition without identification and of word identification failure. Neuropsychologia, 2011, 49: 3224-3237
[24]  22 沈汪兵, 刘昌, 罗劲, 等. 顿悟问题思维僵局早期觉察的脑电研究. 心理学报, 2012, 44: 924-935
[25]  23 Thiruchselvam R, Blechert J, Sheppes G, et al. The temporal dynamics of emotion regulation: an EEG study of distraction and reappraisal. Biol Psychol, 2011, 87: 84-92
[26]  24 Hajcak G, Nieuwenhuis S. Reappraisal modulates the electrocortical response to unpleasant pictures. Cogn Affective Behav Neurosci, 2006, 6, 291-297
[27]  25 Mai X Q, Luo J, Wu J H, et al. “Aha!” effects in a guessing riddle task: an event-related potential study. Hum Brain Mapp, 2004, 23: 128-128
[28]  26 沈汪兵, 刘昌, 张小将, 等. 三字字谜顿悟的时间进程和半球效应: 一项ERP研究. 心理学报, 2011, 43: 229-240
[29]  27 Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Meth, 2004, 134: 9-21
[30]  28 Scherg M. Fundamentals of dipole source potential analysis. In: Grandori F, Hoke M, Romani G, eds. Auditory Evoked Magnetic Fields and Electric Potentials. Karger: Basel, 1990. 40-69
[31]  29 Lancaster J L, Woldorff M G, Parsons L M, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 2000, 10: 120-131
[32]  30 Zhou X, Chen C, Dong Q, et al. Event-related potentials of single-digit addition, subtraction, and multiplication. Neuropsychologia, 2006, 44: 2500-2507
[33]  31 Berg W K, Byrd D L, McNamara J P, et al. Deconstructing the tower: parameters and predictors of problem difficulty on the Tower of London task. Brain Cogn, 2010, 72: 472-482
[34]  1 Dietrich A, Kanso R. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull, 2010, 136: 822-848
[35]  2 Jung-Beeman M, Bowden E M, Haberman J, et al. Neural activity when people solve verbal problems with insight. PLoS Bio, 2004, 2: e97
[36]  3 Ludmer R, Dudai Y, Rubin N. Uncovering camouflage: amygdala activation predicts long-term memory of induced perceptual insight. Neuron, 2011, 69: 1002-1014
[37]  4 Luo J, Niki K. Function of hippocampus in “insight” of problem solving. Hippocampus, 2003, 13: 316-323
[38]  5 Kaplan C A, Simon H A. In search of insight. Cogn Psychol, 1990, 22: 374-419
[39]  6 Moss J, Kotovsky K, Cagan J. The effect of incidental hints when problems are suspended before, during, or after an impasse. J Exp Psychol Learn Mem Cogn, 2011, 37: 140-148
[40]  7 Smith S M. Getting into and out of mental ruts: a theory of fixation, incubation, and insight. In: Sternberg R J, Davidson J E, Eds. The nature of Insight. Cambridge MA: MIT Press, 1995. 229-251
[41]  8 Weisberg R W, Alba J W. An examination of the alleged role of “fixation” in the solution of several “insight” problems. J Exp Psychol Gen, 1986, 110: 169-192
[42]  9 Zhao Y, Tu S, Lei M, et al. The neural basis of breaking mental set: an event-related potential study. Exp Brain Res, 2011, 208: 181-187
[43]  10 Qiu J, Li H, Luo Y, et al. Brain mechanism of cognitive conflict in a guessing Chinese logogriph task. Neuroreport, 2006, 17: 679-682

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133