全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于新一代测序方法的小鼠睾丸出生后发育的转录组研究

, PP. 137-150

Keywords: 新一代测序,转录组,小鼠睾丸,发育

Full-Text   Cite this paper   Add to My Lib

Abstract:

哺乳动物睾丸的发育是一个高度复杂而精密的过程.为了从转录组水平研究睾丸正常发育过程中的动态变化,本实验选取了出生后6日龄、4周龄和10周龄的3组小鼠,分别代表其幼年期、青春期以及成年期.应用超高通量的新一代测序技术(RNA-seq),获得了2.11亿条长度为35bp的序列,鉴定出18837个基因,并且发现表达量最高的基因均与精子发生相关.同时,也发现6日龄小鼠睾丸的基因表达谱明显有别于4和10周龄,表明4周龄小鼠已进入性发育期.本文分析了睾丸发育过程中大量与精子发生和体细胞发育相关的基因,找到了MAPK,Hedgehog和Wnt等信号通路在睾丸不同发育阶段中所起的重要作用.这些研究结果加深了对睾丸发育的分子调控机制的认识.本研究也表明新一代测序技术在转录组研究中具有很大优势.

References

[1]  69 Dahia C L, Rao A J. Regulation of FSH receptor, PKIbeta, IL-6 and calcium mobilization: Possible mediators of differential action of FSH. Mol Cell Endocrinol, 2006, 247: 73-81
[2]  70 Heckert L, Griswold M D. Expression of the FSH receptor in the testis. Recent Prog Horm Res, 1993, 48: 61-77
[3]  71 Li M W, Mruk D D, Cheng C Y. Mitogen-activated protein kinases in male reproductive function. Trends Mol Med, 2009, 15: 159-168
[4]  72 Gnessi L, Emidi A, Jannini E A, et al. Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action. J Cell Biol, 1995, 131: 1105-1121
[5]  73 Basciani S, Mariani S, Spera G, et al. Role of platelet-derived growth factors in the testis. Endocr Rev, 2010, 31: 916-939
[6]  74 Szczepny A, Hime G R, Loveland K L. Expression of hedgehog signalling components in adult mouse testis. Dev Dyn, 2006, 235: 3063-3070
[7]  75 Bitgood M J, Shen L, McMahon A P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 1996, 6: 298-304
[8]  76 Golestaneh N, Beauchamp E, Fallen S, et al. Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction, 2009, 138: 151-162
[9]  77 Tanwar P S, Kaneko-Tarui T, Zhang L, et al. Constitutive WNT/beta- catenin signaling in murine Sertoli cells disrupts their differentiation and ability to support spermatogenesis. Biol Reprod, 2010, 82: 422-432
[10]  78 Ma P, Wang H, Guo R, et al. Stage-dependent Dishevelled-1 expression during mouse spermatogenesis suggests a role in regulating spermatid morphological changes. Mol Reprod Dev, 2006, 73: 774-783
[11]  79 Hacker A, Capel B, Goodfellow P, et al. Expression of Sry, the mouse sex determining gene. Development, 1995, 121: 1603-1614
[12]  80 De Cesare D, Fimia G M, Sassone-Corsi P. CREM, a master-switch of the transcriptional cascade in male germ cells. J Endocrinol Invest, 2000, 23: 592-596
[13]  81 Blendy J A, Kaestner K H, Weinbauer G F, et al. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature, 1996, 380: 162-165
[14]  1 McCarrey J R, O''Brien D A, Skinner M K. Construction and preliminary characterization of a series of mouse and rat testis cDNA libraries. J Androl, 1999, 20: 635-639
[15]  2 Su A I, Cooke M P, Ching K A, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA, 2002, 99: 4465-4470
[16]  3 Tanaka K, Tamura H, Tanaka H, et al. Spermatogonia-dependent expression of testicular genes in mice. Dev Biol, 2002, 246: 466-479
[17]  4 Rockett J C, Christopher Luft J, Brian Garges J, et al. Development of a 950-gene DNA array for examining gene expression patterns in mouse testis. Genome Biol, 2001, 2: RESEARCH0014
[18]  5 Sha J, Zhou Z, Li J, et al. Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol Hum Reprod, 2002, 8: 511-517
[19]  6 Pang A L, Taylor H C, Johnson W, et al. Identification of differentially expressed genes in mouse spermatogenesis. J Androl, 2003, 24: 899-911
[20]  7 Pang A L, Johnson W, Ravindranath N, et al. Expression profiling of purified male germ cells: stage-specific expression patterns related to meiosis and postmeiotic development. Physiol Genomics, 2006, 24: 75-85
[21]  8 Yu Z, Guo R, Ge Y, et al. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol Reprod, 2003, 69: 37-47
[22]  9 Guo R, Yu Z, Guan J, et al. Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev, 2004, 67: 264-272
[23]  10 Clemente E J, Furlong R A, Loveland K L, et al. Gene expression study in the juvenile mouse testis: identification of stage-specific molecular pathways during spermatogenesis. Mamm Genome, 2006, 17: 956-975
[24]  11 Schultz N, Hamra F K, Garbers D L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA, 2003, 100: 12201-12206
[25]  12 Shima J E, McLean D J, McCarrey J R, et al. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod, 2004, 71: 319-330
[26]  13 O''Shaughnessy P J, Fleming L, Baker P J, et al. Identification of developmentally regulated genes in the somatic cells of the mouse testis using serial analysis of gene expression. Biol Reprod, 2003, 69: 797-808
[27]  14 Wu S M, Baxendale V, Chen Y, et al. Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: Biological significance. Genomics, 2004, 84: 971-981
[28]  15 Yao J, Chiba T, Sakai J, et al. Mouse testis transcriptome revealed using serial analysis of gene expression. Mamm Genome, 2004, 15: 433-451
[29]  16 Almstrup K. Analysis of cell-type-specific gene expression during mouse spermatogenesis. Biol Reprod, 2004, 70: 1751-1761
[30]  17 Ellis P J, Furlong R A, Wilson A, et al. Modulation of the mouse testis transcriptome during postnatal development and in selected models of male infertility. Mol Hum Reprod, 2004, 10: 271-281
[31]  18 Divina P, Vlcek C, Strnad P, et al. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order. BMC Genomics, 2005, 6: 29
[32]  19 Chan W Y, Lee T L, Wu S M, et al. Transcriptome analyses of male germ cells with serial analysis of gene expression (SAGE). Mol Cell Endocrinol, 2006, 250: 8-19
[33]  20 Lee T L, Cheung H H, Claus J, et al. GermSAGE: a comprehensive SAGE database for transcript discovery on male germ cell development. Nucleic Acids Res, 2009, 37: D891-897
[34]  21 Ike A, Tokuhiro K, Hirose M, et al. Comprehensive analysis of gene expression in testes producing haploid germ cells using DNA microarray analysis. Int J Androl, 2007, 30: 462-475
[35]  22 Xiao P, Tang A, Yu Z, et al. Gene expression profile of 2058 spermatogenesis-related genes in mice. Biol Pharm Bull, 2008, 31: 201-206
[36]  23 Waldman Ben-Asher H, Shahar I, Yitzchak A, et al. Expression and chromosomal organization of mouse meiotic genes. Mol Reprod Dev, 2010, 77: 241-248
[37]  24 Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621-628
[38]  25 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57-63
[39]  26 Cui P, Lin Q, Ding F, et al. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics, 2010, 96: 259-265
[40]  27 Cui P, Lin Q, Xin C, et al. Hydroxyurea-induced global transcriptional suppression in mouse ES cells. Carcinogenesis, 2010, 31: 1661-1668
[41]  28 Gentleman R C, Carey V J, Bates D M, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 2004, 5: R80
[42]  29 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
[43]  30 Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 2006, 34: W293-297
[44]  31 Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26: 136-138
[45]  32 Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res, 1999, 27: 29-34
[46]  33 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30
[47]  34 Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 2006, 34: D354-357
[48]  35 Kanehisa M, Goto S, Furumichi M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res, 2010, 38: D355-360
[49]  36 Dahlquist K D, Salomonis N, Vranizan K, et al. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet, 2002, 31: 19-20
[50]  37 Yeh J R, Nagano M C. Spermatogonial stem cell biomarkers: improved outcomes of spermatogonial transplantation in male fertility restoration? Expert Rev Mol Diagn, 2009, 9: 109-114
[51]  38 Kubota H, Avarbock M R, Brinster R L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA, 2003, 100: 6487-6492
[52]  39 Phillips B T, Gassei K, Orwig K E. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci, 2010, 365: 1663-1678
[53]  40 Suter L, Koch E, Bechter R, et al. Three-parameter flow cytometric analysis of rat spermatogenesis. Cytometry, 1997, 27: 161-168
[54]  41 Franke F E, Pauls K, Rey R, et al. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl), 2004, 209: 169-177
[55]  42 O''Shaughnessy P J, Hu L, Baker P J. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction, 2008, 135: 839-850
[56]  43 Haider S G. Cell biology of Leydig cells in the testis. Int Rev Cytol, 2004, 233: 181-241
[57]  44 O''Shaughnessy P J, Willerton L, Baker P J. Changes in Leydig cell gene expression during development in the mouse. Biol Reprod, 2002, 66: 966-975
[58]  45 Zhang F P, Pakarainen T, Zhu F, et al. Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology, 2004, 145: 1453-1463
[59]  46 Kanamori M, Konno H, Osato N, et al. A genome-wide and nonredundant mouse transcription factor database. Biochem Biophys Res Commun, 2004, 322: 787-793
[60]  47 Ravasi T, Suzuki H, Cannistraci C V, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 2010, 140: 744-752
[61]  48 Zhou Q, Griswold M D. Regulation of spermatogonia. StemBook. Cambridge (MA): Harvard Stem Cell Institute, 2008
[62]  49 Sekido R. SRY: A transcriptional activator of mammalian testis determination. Int J Biochem Cell Biol, 2010, 42: 417-420
[63]  50 Barrionuevo F, Scherer G. SOX E genes: SOX9 and SOX8 in mammalian testis development. Int J Biochem Cell Biol, 2010, 42: 433-436
[64]  51 Tanaka H, Baba T. Gene expression in spermiogenesis. Cell Mol Life Sci, 2005, 62: 344-354
[65]  52 Meistrich M L, Mohapatra B, Shirley C R, et al. Roles of transition nuclear proteins in spermiogenesis. Chromosoma, 2003, 111: 483-488
[66]  53 Nayernia K, Adham I M, Burkhardt-Gottges E, et al. Asthenozoo- spermia in mice with targeted deletion of the sperm mitochondrion-associated cysteine-rich protein (Smcp) gene. Mol Cell Biol, 2002, 22: 3046-3052
[67]  54 Anway M D, Ravindranath N, Dym M, et al. Identification of a murine testis complementary DNA encoding a homolog to human A-kinase anchoring protein-associated sperm protein. Biol Reprod, 2002, 66: 1755-1761
[68]  55 Kierszenbaum A L, Tres L L. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol, 1975, 65: 258-270
[69]  56 Heidaran M A, Kistler W S. Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids. J Biol Chem, 1987, 262: 13309-13315
[70]  57 Kleene K C. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development, 1989, 106: 367-373
[71]  58 Kleene K C, Bagarova J. Comparative genomics reveals gene-specific and shared regulatory sequences in the spermatid-expressed mammalian Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes. Genomics, 2008, 92: 101-106
[72]  59 Sozubir S, Barber T, Wang Y, et al. Loss of Insl3: a potential predisposing factor for testicular torsion. J Urol, 2010, 183: 2373-2379
[73]  60 Nakamura N, Mori C, Eddy E M. Molecular complex of three testis-specific isozymes associated with the mouse sperm fibrous sheath: hexokinase 1, phosphofructokinase M, and glutathione S-transferase mu class 5. Biol Reprod, 2010, 82: 504-515
[74]  61 Valentin M, Balvers M, Pusch W, et al. Structure and expression of the mouse gene encoding the endozepine-like peptide from haploid male germ cells. Eur J Biochem, 2000, 267: 5438-5449
[75]  62 Selvaraj V, Asano A, Page J L, et al. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol, 2010, 348: 177-189
[76]  63 Dakhova O, O''Day D, Kinet N, et al. Dickkopf-like1 regulates postpubertal spermatocyte apoptosis and testosterone production. Endocrinology, 2009, 150: 404-412
[77]  64 Choi H S, Lee S H, Kim H, et al. Germ cell-specific gene 1 targets testis-specific poly(A) polymerase to the endoplasmic reticulum through protein-protein interactions. FEBS Lett, 2008, 582: 1203-1209
[78]  65 Bellve A R, Millette C F, Bhatnagar Y M, et al. Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J Histochem Cytochem, 1977, 25: 480-494
[79]  66 Tegelenbosch R A, de Rooij D G. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res, 1993, 290: 193-200
[80]  67 Gassei K, Ehmcke J, Wood M A, et al. Immature rat seminiferous tubules reconstructed in vitro express markers of Sertoli cell maturation after xenografting into nude mouse hosts. Mol Hum Reprod, 2010, 16: 97-110
[81]  68 Steger K, Rey R, Louis F, et al. Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis. Hum Reprod, 1999, 14: 136-143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133