全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于整合图谱的鲤生长相关性状QTL的分布及变异规律

, PP. 159-167

Keywords: ,整合图谱,比较QTL分析,生长性状

Full-Text   Cite this paper   Add to My Lib

Abstract:

单个群体数量性状位点(QTL)的检测和识别效率通常是有限的,而多个群体能提高QTL的检测效率并能更好地了解其等位基因的变异和分布.本研究利用4个群体构建了鲤鱼的整合图谱,在此基础上比较分析了不同群体QTL的分布及变异.整合图谱长度为2371.6cM,包含257个微卫星(SSR)和421个SNP标记分布于42个连锁群,平均标记间隔为3.7cM.将4个群体的体重、体长、体高和体厚共67个QTL定位到整合图谱上进行比较分析,发现仅有1个QTL为3个群体共享,9个QTL为2群体共享,未发现4个群体均共享的QTL.QTL的比较分析结果表明,共享QTL可能在控制不同鲤鱼种质间生长性状中起主要作用.此外,探讨了QTL在不同群体间变化的原因和规律,同时揭示了主效和微效基因在不同群体中的遗传表现,为QTL定位策略和分子育种改良鲤生长性状提供理论基础.

References

[1]  1 Liu Z J. Aquaculture Genome Technologies. Oxford, UK: Blackwell Publishing, Ames, IA, 2007
[2]  2 Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull, 2012, 57: 1751-1760
[3]  3 Crooijmans R, Poel J J, Groenen M A M, et al. Microsatellite markers in common carp (Cyprinus carpio L.). Anim Genet, 1997, 28: 129-134
[4]  4 David L, Rajasekaran P, Fang J, et al. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by aflp analysis and a new set of microsatellite markers. Mol Genet Genomics, 2001, 266: 353-362
[5]  5 Hou N, Li D Y, Li Y, et al. Development of 10 tri- and tetranucleotide microsatellite loci for population studies in the common carp (Cyprinus carpio L.). Mol Ecol Resour, 2008, 8: 1357-1359
[6]  6 Sun X W, Liang L Q. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 2004, 238: 165-172
[7]  7 Zheng X H, Kuang Y Y, Zhang X F, et al. A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and snps. Mol Genet Genomics, 2011, 286: 261-277
[8]  8 王宣朋, 孙效文, 李文升, 等. 鲤遗传图谱的构建. 上海海洋大学学报, 2011, 20: 641-648
[9]  9 Li Y, Xu P, Zhao Z X, et al. Construction and characterization of the bac library for common carp Cyprinus carpio L. and establishment of microsynteny with zebrafish danio rerio. Mar Biotechnol, 2011, 13: 706-712
[10]  10 Xu P, Li J, Li Y, et al. Genomic insight into the common carp(Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC genomics, 2011, 12: 188
[11]  11 Xu P, Wang J, Wang J T, et al. Generation of the first BAC-based physical map of the common carp genome. BMC Genomics, 2011, 12: 537
[12]  12 郑先虎, 匡友谊, 鲁翠云, 等. 镜鲤体长、体高、体厚性状QTL定位分析. 遗传, 2011, 33: 1366-1373
[13]  13 张研, 梁利群, 常玉梅, 等. 鲤鱼体长性状的QTL定位及其遗传效应分析. 遗传, 2007, 29: 1243-1248
[14]  14 Zhang Y, Xu P, Lu C Y, et al. Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol, 2011, 13: 376-392
[15]  15 王宣朋, 张晓峰, 李文升, 等. 鲤饲料转化率性状的QTL定位及遗传效应分析. 水生生物学报, 2012, 36: 177-196
[16]  16 毛瑞鑫, 刘福军, 张晓峰, 等. 鲤鱼乳酸脱氢酶活性的QTL检测. 遗传, 2009, 31: 407-411
[17]  17 Coles N D, McMullen M D, Balint-Kurti P J, et al. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010, 184: 799-812
[18]  18 Liu T, Zhang Y, Xue W, et al. Comparison of quantitative trait loci for 1,000-grain weight and spikelets per panicle across three connected rice populations. Euphytica, 2010, 175: 383-394
[19]  19 Marcel T C, Varshney R, Barbieri M, et al. A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to puccinia hordei and of defence gene homologues. Theor Appl Genet, 2007, 114: 487-500
[20]  20 Martin M, Miedaner T, Schwegler D D, et al. Comparative quantitative trait loci mapping for gibberella ear rot resistance and reduced deoxynivalenol contamination across connected maize populations. Crop Sci, 2012, 52: 32-43
[21]  21 Liu G, Kim J J, Jonas E, et al. Combined line-cross and half-sib QTL analysis in duroc-pietrain population. Mamm Genome, 2008, 19: 429-438
[22]  22 Nagamine Y, Haley C S, Sewalem A, et al. Quantitative trait loci variation for growth and obesity between and within lines of pigs (sus scrofa). Genetics, 2003, 164: 629-635
[23]  23 Walling G, Visscher P, Wilson A, et al. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. J Anim Sci, 2004, 82: 2234
[24]  24 Wang C M, Lo L C, Feng F, et al. Identification and verification of QTL associated with growth traits in two genetic backgrounds of barramundi (Lates calcarifer). Anim Genet, 2008, 39: 34-39
[25]  25 Hayes B J, Gjuvsland A, Omholt S. Power of QTL mapping experiments in commercial atlantic salmon populations, exploiting linkage and linkage disequilibrium and effect of limited recombination in males. Heredity, 2006, 97: 19-26
[26]  26 Van Ooijen J. JoinMap? 4, software for the calculation of genetic linkage maps in experimental populations. The Netherlands: Kyazma BV, Wageningen, 2006
[27]  27 Kosambi D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175
[28]  28 Van Ooijen J. MapQTL? 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. The Netherlands: Kyazma BV, Wageningen, 2009
[29]  29 张天奇, 张晓峰, 谭昭君, 等. 镜鲤体长性状的QTL定位分析. 遗传, 2011, 33: 1245-1250
[30]  30 Millan T, Winter P, Jüngling R, et al. A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica, 2010, 175: 175-189
[31]  31 Gustafson J P, Ma X F, Korzun V, et al. A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet, 2009, 118: 793-800
[32]  32 Li H, Kilian A, Zhou M, et al. Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genetics Genomics, 2010, 284: 319-331
[33]  33 Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): Construction and integration of three individual maps from dh populations. Theor Appl Genet, 2001, 103: 491-507
[34]  34 Wang L, Liu W, Xu Y, et al. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet, 2007, 115: 463-476
[35]  35 Barton N H, Keightley P D. Understanding quantitative genetic variation. Nat Rev Genet, 2002, 3: 11-21
[36]  36 Beavis W, Grant D, Albertsen M, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141-145
[37]  37 Hill W G. Understanding and using quantitative genetic variation. PhilosoT R Soc B, 2010, 365: 73-85
[38]  38 Farrall M. Quantitative genetic variation: A post-modern view. Hum Mol Genet, 2004, 13: R1-R7
[39]  39 Mihaljevic R U, Melchinger H F, Albrecht E. Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of european maize. Crop Sci, 2004, 44: 114

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133