1 Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature, 2011, 473: 337-342??
[2]
2 Eriksson J, Feny? D. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat Biotechnol, 2007, 25: 651-655??
[3]
3 Vogel C, Marcotte E M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012, 13: 227-232
[4]
4 Marquerat S, Schmidt A, Codlin S, et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell, 2012, 151: 671-683??
[5]
5 Ishihama Y, Schmidt T, Rappsilber J, et al. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics, 2008, 9: 102??
[6]
6 de Sousa Abreu R, Penalva L O, Marcotte E M, et al. Global signatures of protein and mRNA expression levels. Mol BioSyst, 2009, 5: 1512-1526
[7]
7 Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett, 2009, 583: 3966-3973??
[8]
8 Vogel C, Abreu Rde S, Ko D, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol, 2010, 6: 400
[9]
9 Laurent J M, Vogel C, Kwon T, et al. Protein abundances are more conserved than mRNA abundances across diverse taxa. Proteomics, 2010, 10: 4209-4212??
[10]
10 Lu P, Vogel C, Wang R, et al. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol, 2007, 25: 117-124??
[11]
11 Taniguchi Y, Choi P J, Li G W, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 2010, 329: 533-538??
[12]
12 Cambridge S B, Gnad F, Nguyen C, et al. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res, 2011, 10: 5275-5284??
[13]
13 Ben-Tabou de-Leon S, Davidson E H. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Devel Biol, 2009, 325: 317-328??
[14]
14 Yen H C, Xu Q, Chou D M, et al. Global protein stability profiling in mammalian cells. Science, 2008, 322: 918-923??
[15]
15 Boisvert F M, Ahmad Y, Gierliński M, et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics, 2012, 11: M111.011429
[16]
16 Ahmad Y, Boisvert F M, Lundberg E, et al. Systematic analysis of protein pools, isoforms, and modifications affecting turnover and subcellular localization. Mol Cell Proteomics, 2012, 11: M111.013680
[17]
17 Sharova L V, Sharov A A, Nedorezov T, et al. Database for mRNA half-life of 19977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res, 2009, 16: 45-58??
[18]
18 Drummond D A, Bloom J D, Adami C, et al. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA, 2005, 102: 14338-14343??
[19]
19 Drummond D A, Wilke C O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell, 2008, 134: 341-352??
[20]
20 Urrutia A O, Hurst L D. The signature of selection mediated by expression on human genes. Genome Res, 2003, 13: 2260-2264??
[21]
21 Beck M, Schmidt A, Malmstroem J, et al. The quantitative proteome of a human cell line. Mol Syst Biol, 2011, 7: 549
[22]
22 Wolf Y I, Gopich I V, Lipman D J, et al. Relative contributions of intrinsic structural-functional constraints and translation rate to the evolution of protein-coding genes. Genome Biol Evol, 2010, 2: 190-199??
[23]
23 Zhong F, Yang D, Hao Y, et al. Regular patterns for proteome-wide distribution of protein abundance across species. PLoS One, 2012, 7: e32423??
[24]
24 Yang D, Zhong F, Li D, et al. General trends in the utilization of structural factors contributing to biological complexity. Mol Biol Evol, 2012, 29: 1957-1968??
[25]
25 Weiss M, Schrimpf S, Hengartner M O, et al. Shotgun proteomics data from multiple organisms reveals remarkable quantitative conservation of the eukaryotic core proteome. Proteomics, 2010, 10: 1297-1306??
[26]
26 Yang D, Jiang Y, He F. An integrated view of the correlations between genomic and phenomic variables. J Genet Genomics, 2009, 36: 645-651??
[27]
27 Nagaraj N, Wisniewski J R, Geiger T, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol, 2011, 7: 548
[28]
28 Castillo-Davis C I, Mekhedov S L, Hartl D L, et al. Selection for short introns in highly expressed genes. Nat Genet, 2002, 31: 415-418
[29]
29 Ingvarsson P K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol, 2007, 24: 836-844
[30]
30 McHardy A C, Puhler A, Kalinowski J, et al. Comparing expression level-dependent features in codon usage with protein abundance: an analysis of ‘predictive proteomics’. Proteomics, 2004, 4: 46-58 ??
[31]
31 Rocha E P, Danchin A. An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol, 2004, 21: 108-116
[32]
32 Akashi H. Gene expression and molecular evolution. Curr Opin Genet Devel, 2001, 11: 660-666??
[33]
33 Akashi H. Translational selection and yeast proteome evolution. Genetics, 2003, 164: 1291-1303
[34]
34 Jansen R, Gerstein M. Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res, 2000, 28: 1481-1488??
[35]
35 Coghlan A, Wolfe K H. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast, 2000, 16: 1131-1145??
[36]
36 贺福初. 呼唤理论生物学. 科技导报, 1997, 8: 3-5
[37]
37 Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomics, 2011, 10.O111.00999
[38]
38 Maher B. ENCODE: the human encyclopaedia. Nature, 2012, 489: 46-48??
[39]
39 Fritzsch F S, Dusny C, Frick O, et al. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Ann Rev Chem Biomol Eng, 2012, 3: 129-155??