全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蛋白质丰度调控及整体分布的规律性认识

DOI: 10.1360/052012-368, PP. 54-62

Keywords: 蛋白质丰度,丰度调控,蛋白质内在性质,丰度分布规律

Full-Text   Cite this paper   Add to My Lib

Abstract:

蛋白质是生命的重要物质基础之一,也是生命活动的主要承担者.蛋白质丰度与其执行的生物学功能息息相关,受基因表达各个过程严格精密的调控.蛋白质丰度的直接影响因素包括相应mRNA初始量、蛋白质合成速率和降解速率.细胞对此3因素的调控将决定蛋白质最终的丰度.得益于定量蛋白质组学的飞速发展,规模化蛋白质丰度数据的产出,使得研究者可致力于发掘蛋白质丰度与其内在性质(如进化特征、结构特征、功能类型等)间规律性的相关性,这对于深入认识生命系统组成的基本原则具有重要意义.本文总结了蛋白质丰度调控及蛋白质丰度与其内在性质相关性的最新研究进展,及对这些规律性现象反映的生物学意义的解读.

References

[1]  1 Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature, 2011, 473: 337-342??
[2]  2 Eriksson J, Feny? D. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat Biotechnol, 2007, 25: 651-655??
[3]  3 Vogel C, Marcotte E M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012, 13: 227-232
[4]  4 Marquerat S, Schmidt A, Codlin S, et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell, 2012, 151: 671-683??
[5]  5 Ishihama Y, Schmidt T, Rappsilber J, et al. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics, 2008, 9: 102??
[6]  6 de Sousa Abreu R, Penalva L O, Marcotte E M, et al. Global signatures of protein and mRNA expression levels. Mol BioSyst, 2009, 5: 1512-1526
[7]  7 Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett, 2009, 583: 3966-3973??
[8]  8 Vogel C, Abreu Rde S, Ko D, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol, 2010, 6: 400
[9]  9 Laurent J M, Vogel C, Kwon T, et al. Protein abundances are more conserved than mRNA abundances across diverse taxa. Proteomics, 2010, 10: 4209-4212??
[10]  10 Lu P, Vogel C, Wang R, et al. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol, 2007, 25: 117-124??
[11]  11 Taniguchi Y, Choi P J, Li G W, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 2010, 329: 533-538??
[12]  12 Cambridge S B, Gnad F, Nguyen C, et al. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res, 2011, 10: 5275-5284??
[13]  13 Ben-Tabou de-Leon S, Davidson E H. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Devel Biol, 2009, 325: 317-328??
[14]  14 Yen H C, Xu Q, Chou D M, et al. Global protein stability profiling in mammalian cells. Science, 2008, 322: 918-923??
[15]  15 Boisvert F M, Ahmad Y, Gierliński M, et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics, 2012, 11: M111.011429
[16]  16 Ahmad Y, Boisvert F M, Lundberg E, et al. Systematic analysis of protein pools, isoforms, and modifications affecting turnover and subcellular localization. Mol Cell Proteomics, 2012, 11: M111.013680
[17]  17 Sharova L V, Sharov A A, Nedorezov T, et al. Database for mRNA half-life of 19977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res, 2009, 16: 45-58??
[18]  18 Drummond D A, Bloom J D, Adami C, et al. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA, 2005, 102: 14338-14343??
[19]  19 Drummond D A, Wilke C O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell, 2008, 134: 341-352??
[20]  20 Urrutia A O, Hurst L D. The signature of selection mediated by expression on human genes. Genome Res, 2003, 13: 2260-2264??
[21]  21 Beck M, Schmidt A, Malmstroem J, et al. The quantitative proteome of a human cell line. Mol Syst Biol, 2011, 7: 549
[22]  22 Wolf Y I, Gopich I V, Lipman D J, et al. Relative contributions of intrinsic structural-functional constraints and translation rate to the evolution of protein-coding genes. Genome Biol Evol, 2010, 2: 190-199??
[23]  23 Zhong F, Yang D, Hao Y, et al. Regular patterns for proteome-wide distribution of protein abundance across species. PLoS One, 2012, 7: e32423??
[24]  24 Yang D, Zhong F, Li D, et al. General trends in the utilization of structural factors contributing to biological complexity. Mol Biol Evol, 2012, 29: 1957-1968??
[25]  25 Weiss M, Schrimpf S, Hengartner M O, et al. Shotgun proteomics data from multiple organisms reveals remarkable quantitative conservation of the eukaryotic core proteome. Proteomics, 2010, 10: 1297-1306??
[26]  26 Yang D, Jiang Y, He F. An integrated view of the correlations between genomic and phenomic variables. J Genet Genomics, 2009, 36: 645-651??
[27]  27 Nagaraj N, Wisniewski J R, Geiger T, et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol, 2011, 7: 548
[28]  28 Castillo-Davis C I, Mekhedov S L, Hartl D L, et al. Selection for short introns in highly expressed genes. Nat Genet, 2002, 31: 415-418
[29]  29 Ingvarsson P K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol, 2007, 24: 836-844
[30]  30 McHardy A C, Puhler A, Kalinowski J, et al. Comparing expression level-dependent features in codon usage with protein abundance: an analysis of ‘predictive proteomics’. Proteomics, 2004, 4: 46-58 ??
[31]  31 Rocha E P, Danchin A. An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol, 2004, 21: 108-116
[32]  32 Akashi H. Gene expression and molecular evolution. Curr Opin Genet Devel, 2001, 11: 660-666??
[33]  33 Akashi H. Translational selection and yeast proteome evolution. Genetics, 2003, 164: 1291-1303
[34]  34 Jansen R, Gerstein M. Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res, 2000, 28: 1481-1488??
[35]  35 Coghlan A, Wolfe K H. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast, 2000, 16: 1131-1145??
[36]  36 贺福初. 呼唤理论生物学. 科技导报, 1997, 8: 3-5
[37]  37 Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomics, 2011, 10.O111.00999
[38]  38 Maher B. ENCODE: the human encyclopaedia. Nature, 2012, 489: 46-48??
[39]  39 Fritzsch F S, Dusny C, Frick O, et al. Single-cell analysis in biotechnology, systems biology, and biocatalysis. Ann Rev Chem Biomol Eng, 2012, 3: 129-155??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133