全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大发现时代的“生命组学”(代序)

DOI: 10.1360/052013-5, PP. 1-15

Keywords: 大发现时代,生命组学,生命科学

Full-Text   Cite this paper   Add to My Lib

Abstract:

自然科学史表明,当人类对某一领域的认知积累到一定程度时,常常会出现一位甚至数位科学大家,促使一系列重大发现纷至沓来,相关学科因而进入“大发现时代”.数学、地理学、物理学、化学都曾出现过“大发现时代”.而生命科学的“大发现时代”自16世纪以来层出不穷、持续不断.随着分子生物学50余年日新月异的发展,当代生命科学的“大发现时代”临近再次爆发,而最终“点燃”此次爆发的极大可能就是“生命组学”.20世纪末,基因组学书写了“生命天书”,蛋白质组学随即解读这部伟大天书,RNA组学、糖组学、代谢组学等也相继蓬勃兴起.简言之,“组学”以其特立独行的认识论、方法论,一经问世便迅速成为推动并主导生命科学再度迈入大发现时代的强劲引擎.集多种组学之大成的“生命组学”研究模式已现端倪,大发现时代将如影随形.

References

[1]  20 Han J W, Zheng H F, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet, 2009, 41: 1234-1237??
[2]  21 Zhang F R, Huang W, Chen S M, et al. Genomewide association study of leprosy. N Engl J Med, 2009, 361: 2609-2618??
[3]  22 Bei J X, Li Y, Jia W H, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010, 42: 599-603??
[4]  23 Quan C, Ren Y Q, Xiang L H, et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet, 2010, 42: 614-618??
[5]  33 Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet, 2011, 43: 1215-1218
[6]  34 Shi Y, Li Z, Xu Q, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet, 2011, 43: 1224-1227
[7]  35 Yue W H, Wang H F, Sun L D, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet, 2011, 43: 1228-123
[8]  36 Zhang F, Liu H, Chen S, et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet, 2011, 43: 1247-1251??
[9]  37 Huang X, Zhao Y, Wei X, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32-39??
[10]  38 Wu C, Miao X, Huang L, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet, 2011, 44: 62-66??
[11]  39 Lin Z, Bei J X, Shen M, et al. A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis. Nat Genet, 2011, 44: 73-77??
[12]  40 Yu X Q, Li M, Zhang H, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet, 2011, 44: 178-182??
[13]  41 Hu Z, Xia Y, Guo X, et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet, 2011, 44: 183-186??
[14]  42 Lee Y C, Kuo H C, Chang J S, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet, 2012, 44: 522-525 ??
[15]  43 Lu X, Wang L, Chen S, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet, 2012, 44: 890-894??
[16]  44 Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet, 2012, 44: 1020-1025??
[17]  45 Cheung C L, Lau K S, Ho A Y, et al. Genome-wide association study identifies a susceptibility locus for thyrotoxic periodic paralysis at 17q24.3. Nat Genet, 2012, 44: 1026-1029
[18]  46 Wu C, Kraft P, Zhai K, et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet, 2012, 44: 1090-1097??
[19]  47 Xu J, Mo Z, Ye D, et al. Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat Genet, 2012, 44: 1231-1235
[20]  48 Jiang D K, Sun J, Cao G, et al. Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet, 2012, 45: 72-75??
[21]  49 Omenn G S, States D J, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics, 2005, 5: 3226-3245
[22]  50 Deutsch E W, Eng J K, Zhang H, et al. Human plasma peptideAtlas. Proteomics, 2005, 5: 3497-3500??
[23]  51 Sun A, Jiang Y, Wang X, et al. Liverbase: a comprehensive view of human liver biology. J Proteome Res, 2010, 9: 50-58??
[24]  52 Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 328: 974
[25]  53 Zhong F, Yang D, Hao Y, et al. Regular patterns for proteome-wide distribution of protein abundance across species. PLoS One, 2012, 7: e32423??
[26]  54 Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005, 122: 957-968??
[27]  55 Wang J, Huo K, Ma L, et al. Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol, 2011, 7: 536
[28]  56 Pennisi E. Shining a light on the genome’s ‘dark matter’. Science, 2010, 330: 1614??
[29]  57 Wapinski O, Chang H Y. Long noncoding RNAs and human disease. Trends Cell Biol, 2011, 21: 354-361??
[30]  1 吴国盛. 科学的历程. 长沙: 湖南科学技术出版社, 1995
[31]  2 Gelbart W M. Databases in genomic research. Science, 1998, 282: 659-661??
[32]  3 Watson J D, Crick F H C. Genetical implications of the structure of deoxyribonucleic acid. Nature, 1953, 171: 964-967
[33]  4 Ryle A P, Sanger F, Smith L F, et al. The disulphide bonda of insulin. Biochem J, 1955, 60: 541-556
[34]  5 Kendrew J C, Bodo G, Dintzis H M, et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 1958, 181: 662-666??
[35]  6 Crick F H C. On protein synthesis. Symp Soc Exp Biol XII, 1958, 12: 138-163
[36]  7 Jacob F, Perrin D, Sanchez C, et al. The operon: a group of genes with expression coordinated by an operator. C R Acad Sci Paris, 1960, 250: 1727-1729
[37]  8 Nirenberg M W, Matthaei J H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA, 1961, 47: 1588-1602??
[38]  9 Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature, 1970, 226: 1209-1211??
[39]  10 Temin H M, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 1970, 226: 1211-1213??
[40]  11 Linn S, Arber W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci USA, 1968, 59: 1300-1306??
[41]  12 Smith H, Wilcox K W. A Restriction enzyme from Hemophilus influenzae *1I. Purification and general properties. J Mol Biol, 1970, 51: 379-391??
[42]  13 Stehelin D, Fujita D J, Padgett T, et al. Detection and enumeration of transformation-defective strains of avian sarcoma virus with molecular hybridization. Virology, 1977, 76: 675-684??
[43]  14 Sanger F, Air G M, Barrell B G, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 1977, 265: 687-695??
[44]  15 Saiki R, Scharf S, Mullis K B, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230: 1350-1354??
[45]  16 Sanger F, Coulson A R. A rapid metho1985d for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol, 1975, 94: 441-448??
[46]  17 Gonzaga-Jauregui C, et al. Human genome sequencing in health and disease. Annu Rev Med, 2012, 63: 35-61??
[47]  18 Lander E S, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860-921??
[48]  19 Zhang X J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet, 2009, 41: 205-210??
[49]  24 Zhang H, Zhai Y, Hu Z, et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet, 2010, 42: 755-758
[50]  25 Wang L D, Zhou F Y, Li X M, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet, 2010, 42: 759-763??
[51]  26 Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967??
[52]  27 Chen Z J, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet, 2011, 43: 55-59
[53]  28 Wu C, Hu Z, He Z, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet, 2011, 43: 345-349??
[54]  29 Wu C, Hu Z, He Z, et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat Genet, 2011, 43: 679-684??
[55]  30 Sun L D, Xiao F L, Li Y, et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet, 2011, 43: 690-694??
[56]  31 Hu Z, Wu C, Shi Y, et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet, 2011, 43: 792-796
[57]  32 Chu X, Pan C M, Zhao S X, et al. A genome-wide association study identifies two new risk loci for Graves'' disease. Nat Genet, 2011, 43: 897-901??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133