118 Takatsu K, Miyaoku K, Roy S R, et al. Induction of female-to-male sex change in adult zebrafish by aromatase inhibitor treatment. Sci Rep, 2013, 3: 3400
[2]
119 Godwin J. Social determination of sex in reef fishes. Semin Cell Dev Biol, 2009, 20: 264-270
[3]
120 Munday P L, Wilson White J, Warner R R. A social basis for the development of primary males in a sex-changing fish. Proc Biol Sci, 2006, 273: 2845-2851
[4]
121 Sinclair A H, Berta P, Palmer M S, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346: 240-244
[5]
122 Hiramatsu R, Matoba S, Kanai-Azuma M, et al. A critical time window of Sry action in gonadal sex determination in mice. Development, 2009, 136: 129-138
[6]
123 Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 2002, 417: 559-563
[7]
124 Myosho T, Otake H, Masuyama H, et al. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics, 2012, 191: 163-170
[8]
125 Takehana Y, Matsuda M, Myosho T, et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun, 2014, 5:4157
[9]
126 Kamiya T, Kai W, Tasumi S, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet, 2012, 8: e1002798
[10]
127 Hattori R S, Murai Y, Oura M, et al. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA, 2012, 109: 2955-2959
[11]
128 Yano A, Guyomard R, Nicol B, et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol, 2012, 22: 1423-1428
[12]
129 Matson C K, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet, 2012, 13: 163-174
[13]
130 Zarkower D. Dmrt genes in vertebrate gametogenesis. Curr Top Dev Biol, 2013, 102: 327-356
[14]
131 Masuyama H, Yamada M, Kamei Y, et al. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Res, 2012, 20: 163-176
[15]
132 Otake H, Shinomiya A, Kawaguchi A, et al. The medaka sex-determining gene DMY acquired a novel temporal expression pattern after duplication of Dmrt1. Genesis, 2008, 46: 719-723
[16]
133 Morinaga C, Saito D, Nakamura S, et al. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci USA, 2007, 104: 9691-9696
[17]
134 Smith C A, Roeszler K N, Ohnesorg T, et al. The avian Z-linked gene Dmrt1 is required for male sex determination in the chicken. Nature, 2009, 461: 267-271
[18]
135 Yoshimoto S, Okada E, Umemoto H, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci USA, 2008, 105: 2469-2474
[19]
136 Yoshimoto S, Ikeda N, Izutsu Y, et al. Opposite roles of Dmrt1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development, 2010, 137: 2519-2526
[20]
137 Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet, 2014, 46: 253-260
[21]
138 Shao C, Li Q, Chen S, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res, 2014, 24: 604-615
[22]
139 Graves J A. The epigenetic sole of sex and dosage compensation. Nat Genet, 2014, 46: 215-217
[23]
140 Graves J A. Weird animal genomes and the evolution of sex and sex chromosomes. Annu Rev Genet, 2008, 42: 565-586
[24]
141 Graves J A. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res, 2014, 22: 45-57
[25]
142 Martinez P, Bouza C, Hermida M, et al. Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics, 2009, 183: 1443-1452
[26]
143 Shirak A, Seroussi E, Cnaani A, et al. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination. Genetics, 2006, 174: 1573-1581
[27]
144 Xu S, Xia W, Zohar Y, et al. Zebrafish Dmrta2 regulates the expression of Cdkn2c in spermatogenesis in the adult testis. Biol Reprod, 2013, 88: 14
[28]
149 Schartl M. Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev, 2004, 14: 634-641
[29]
150 Nakamura M. The mechanism of sex determination in vertebrates: are sex steroids the key-factor? J Exp Zool A Ecol Genet Physiol, 2010, 313: 381-398
[30]
151 Angelopoulou R, Lavranos G, Manolakou P. Sex determination strategies in 2012: towards a common regulatory model? Reprod Biol Endocrinol, 2012, 10: 13
[31]
152 Morohashi K, Baba T, Tanaka M. Steroid hormones and the development of reproductive organs. Sex Dev, 2013, 7: 61-79
[32]
153 Herpin A, Adolfi M C, Nicol B, et al. Divergent expression regulation of gonad development genes in medaka shows incomplete conservation of the downstream regulatory network of vertebrate sex determination. Mol Biol Evol, 2013, 30: 2328-2346
[33]
154 Siegfried K R. In search of determinants: gene expression during gonadal sex differentiation. J Fish Biol, 2010, 76: 1879-1902
[34]
155 Trukhina A V, Lukina N A, Wackerow-Kouzova N D, et al. The variety of vertebrate mechanisms of sex determination. Biomed Res Int, 2013: 587460
[35]
156 Navarro-Martin L, Vinas J, Ribas L, et al. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet, 2011, 7: e1002447
[36]
157 Zhang Y, Zhang S, Liu Z, et al. Epigenetic modifications during sex change repress gonadotropin stimulation of cyp19a1a in a teleost ricefield eel (Monopterus albus). Endocrinology, 2013, 154: 2881-2890
[37]
158 Cnaani A, Levavi-Sivan B. Sexual development in fish, practical applications for aquaculture. Sex Dev, 2009, 3: 164-175
[38]
159 Weber G M, Lee C S. Current and future assisted reproductive technologies for fish species. Adv Exp Med Biol, 2014, 752: 33-76
162 Hickling C F. The Malacca tilapia hybrids. J Genet, 1960, 57: 1-10
[42]
163 Wohlfarth G W, Hulata G, Halevy A. Growth, survival and sex ratio of some tilapia species and interspecific hybrids. In: Rosenthal H, Sarig S, eds. Research in Modern Aquaculture. Bredene: European Aquaculture Soc, 1990, 11: 87-101
[43]
164 Wohlfarth G W. The unexploited potential of tilapia hybrids in aquaculture. Aquac Res, 1994, 25: 781-788
166 Wolters W R, DeMay R. Production characteristics of striped bass×white bass and striped bass×yellow bass hybrids. J World Aquacult Soc, 1996, 27: 202-207
[46]
167 Bartley D M, Rana K, Immink A J. The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fish, 2000, 10: 325-337
[47]
168 Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, 1999, 173: 235-246
[48]
169 Kato K, Murata O, Yamamoto S, et al. Viability, growth and external morphology of meiotic-and mitotic-gynogenetic diploids in red sea bream, Pagrus major. J Appl Ichthyol, 2001, 17: 97-103
[49]
170 Francescon A, Libertini A, Bertotto D, et al. Shock timing in mitogynogenesis and tetraploidization of the European sea bass Dicentrarchus labrax. Aquaculture, 2004, 236: 201-209
[50]
171 Ji Z S, Chen S L, Yang J F, et al. Artificial gynogenesis and assessment of homozygosity in meiotic gynogens of spotted halibut (Verasper variegatus). Aquacult Int, 2010, 18: 1151-1161
[51]
172 Chen S L, Ji X S, Shao C W, et al. Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY), 2012, 14: 120-128
[52]
196 da Silva E M, Wong M S, Martins C, et al. Screening and characterization of sex-specific DNA fragments in the freshwater fish matrincha, Brycon amazonicus (Teleostei: Characiformes: Characidae). Fish Physiol Biochem, 2012, 38: 1487-1496
[53]
197 Piferrer F, Donaldson E M. Uptake and clearance of exogenous estradiol-17 and testosterone during the early development of coho salmon (Oncorhynchus kisutch), including eggs, alevins and fry. Fish Physiol Biochem, 1994, 13: 219-232
199 Luo K, Xiao J, Liu S, et al. Massive production of all-female diploids and triploids in the crucian carp. Int J Biol Sci, 2011, 7: 487-495
[56]
200 Liu H, Guan B, Xu J, et al. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Mar Biotechnol (NY), 2013, 15: 321-328
[57]
201 Bachtrog D, Mank J E, Peichel C L, et al. Sex determination: why so many ways of doing It? PLoS Biol, 2014, 12: e1001899
[58]
202 Jao L E, Wente S R, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA, 2013, 110: 13904-13909
[59]
203 Li M, Yang H, Zhao J, et al. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics, 2014, 197: 591-599
[60]
204 Zhang L L, Zhou Q. CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci, 2014, 57: 639-640
[61]
1 Bell G. The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Berkeley: The University of California Press, 1982
[62]
2 Liu C K. Rudimentary hermaphroditism in the symbranchoid eel, Monopterus javanensis. Sinensia, 1944, 15: 1-8
[63]
3 Bullough W S. Hermaphroditism in the lower vertebrates. Nature, 1947, 160: 9-11
[64]
4 桂建芳. 鱼类性别和生殖的遗传基础及其人工控制. 北京: 科学出版社, 2007
[65]
5 Long J A. The Rise of Fishes: 500 Million Years of Evolution. 2nd ed. Baltimore: The Johns Hopkins University Press, 2010
[66]
6 Devlin R H, Nagahama Y. Sex determition and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208: 191-364
[67]
7 Kobayashi Y, Nagahama Y, Nakamura M. Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev, 2013, 7: 115-125
[68]
8 Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn, 2013, 242: 339-353
[69]
9 Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2014. Rome, 2014. ISBN 978-92-5-108275-1
[70]
10 Naylor R L, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies. Nature, 2000, 405: 1017-1024
[71]
11 James H T, Geoff L A. Fish as food: aquaculture''s contribution. EMBO Rep, 2001, 21: 958-963
14 Jalabert B. Particularities of reproduction and oogenesis in teleost fish compared mammals. Reprod Nutr Dev, 2005, 45: 261-279
[75]
79 Dean R, Mank J E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol, 2014; 27: 1443-1453
[76]
80 Leinonen T, Cano J M, Meril? J. Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus. Heredity, 2011, 106: 218-227
[77]
81 Hyun S. Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci, 2013, 70: 2351-2365
[78]
82 Reindl K M, Sheridan M A. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol, 2012, 163: 231-245
[79]
83 Sebag J A, Zhang C, Hinkle P M, et al. Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science, 2013, 341: 278-281
[80]
84 Lampert K P, Schmidt C, Fischer P, et al. Determination of onset of sexual maturation and mating behavior by melanocortin receptor 4 polymorphisms. Curr Biol, 2010, 20: 1729-1734
[81]
85 Tao W, Yuan J, Zhou L, et al. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One, 2013, 8:e63604
[82]
86 Jing J, Wu J, Liu W, et al. Sex-biased miRNAs in gonad and their potential roles for testis development in yellow catfish. PLoS One, 2014, 9:e107946
[83]
87 Roberts R B, Ser J R, Kocher T D. Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science, 2009, 326: 998-1001
[84]
88 Kitano J, Ross J A, Mori S, et al. A role for a neo-sex chromosome in stickleback speciation. Nature, 2009, 461: 1079-1083
[85]
89 Volff J N, Nanda I, Schmid M, et al. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex Dev, 2007, 1: 85-99
[86]
90 Stelkens R B, Wedekind C. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences. Mol Ecol, 2010, 19: 627-646
[87]
91 Baroiller J F, D''Cotta H, Saillant E. Environmental effects on fish sex determination and differentiation. Sex Dev, 2009, 3: 118-135
[88]
92 Piferrer F, Ribas L, Diaz N. Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol (NY), 2012, 14: 591-604
[89]
93 Eisbrenner W D. Sex determination in Tasmanian Atlantic salmon. Master Dissertation. British Columbia: Simon Fraser University, 2013
[90]
94 Arkhipchuk V V. Role of chromosomal and genome mutations in the evolution of bony fishes. Hydrobiol J, 1995, 31: 55-65
[91]
95 Bull J J. Sex determining mechanisms: an evolutionary perspective. Experientia, 1985, 41: 1285-1296
[92]
96 Liew W C, Orban L. Zebrafish sex: a complicated affair. Brief Funct Genomics, 2014, 13: 172-187
[93]
97 Liew W C, Bartfai R, Lim Z, et al. Polygenic sex determination system in zebrafish. PLoS One, 2012, 7: e34397
[94]
98 Bradley K M, Breyer J P, Melville D B, et al. An SNP-based linkage map for Zebrafish reveals sex determination loci. G3 (Bethesda), 2011, 1: 3-9
[95]
99 Ser J R, Roberts R B, Kocher T D. Multiple interacting loci control sex determination in lake Malawi cichlid fish. Evolution, 2010, 64: 486-501
[96]
100 Vandeputte M, Dupont-Nivet M, Chavanne H, et al. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics, 2007, 176: 1049-1057
[97]
101 Schultheis C, Zhou Q, Froschauer A, et al. Molecular analysis of the sex-determining region of the platyfish Xiphophorus maculatus. Zebrafish, 2006, 3: 299-309
[98]
102 Cioffi M B, Liehr T, Trifonov V, et al. Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res, 2013, 141: 186-194
[99]
103 Kitano J, Peichel C. Turnover of sex chromosomes and speciation in fishes. Environ Biol Fishes, 2012, 94: 549-558
[100]
104 Orban L, Sreenivasan R, Olsson P E. Long and winding roads: testis differentiation in zebrafish. Mol Cell Endocrinol, 2009, 312: 35-41
[101]
105 Geffroy B, Guiguen Y, Fostier A, et al. New insights regarding gonad development in European eel: evidence for a direct ovarian differentiation. Fish Physiol Biochem, 2013, 39: 1129-1140
[102]
106 Shang E H, Yu R M, Wu R S. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol, 2006, 40: 3118-3122
[103]
107 Baroiller J F, Guiguen Y, Fostier A. Endocrine and environmental aspects of sex differentiation in fish. Cell Mol Life Sci, 1999, 55: 910-931
[104]
108 Ospina-Alvarez N, Piferrer F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One, 2008, 3: e2837
[105]
109 Pavlidis M, Koumoundouros G, Sterioti A, et al. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). J Exp Zool, 2000, 287: 225-232
[106]
110 Zhou, L, Gui J F. Molecular mechanisms underlying sex change in hermaphroditic groupers. Fish Physiol Biochem, 2010, 36: 181-193
[107]
111 Xia W, Zhou L, Yao B, et al. Differential and spermatogenic cell-specific expression of Dmrt1 during sex reversal in protogynous hermaphroditic groupers. Mol Cell Endocrinol, 2007, 263: 156-172
[108]
112 Wang Y, Zhou L, Yao B, et al. Differential expression of thyroid-stimulating hormone beta subunit in gonads during sex reversal of orange-spotted and red-spotted groupers. Mol Cell Endocrinol, 2004, 220: 77-88
[109]
113 Yao B, Zhou L, Wang Y, et al. Differential expression and dynamic changes of Sox3 during gametogenesis and sex reversal in protogynous hermaphroditic fish. J Exp Zool A Ecol Genet Physiol, 2007, 307: 207-219
[110]
114 Huang W, Zhou L, Li Z, et al. Expression pattern, cellular localization and promoter activity analysis of ovarian aromatase (Cyp19a1a) in protogynous hermaphrodite red-spotted grouper. Mol Cell Endocrinol, 2009, 307: 224-236
[111]
115 Kobayashi T, Kajiura-Kobayashi H, Guan G, et al. Sexual dimorphic expression of Dmrt1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev Dyn, 2008, 237: 297-306
[112]
116 Kitano T, Hayashi Y, Shiraishi E, et al. Estrogen rescues masculinization of genetically female medaka by exposure to cortisol or high temperature. Mol Reprod Dev, 2012, 79: 719-726
[113]
117 Sun L N, Jiang X L, Xie Q P, et al. Transdifferentiation of differentiated ovary into functional testis by long term treatment of aromatase inhibitor in Nile tilapia. Endocrinology, 2014, 155: 1476-1488
[114]
15 Heule C, Salzburger W, Bohne A. Genetics of sexual development: an evolutionary playground for fish. Genetics, 2014, 196: 579-591
[115]
16 Wu G C, Tomy S, Lee M F, et al. Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol, 2010, 167: 417-421
[116]
17 Liu M, de Mitcheson Y S. Gonad development during sexual differentiation in hatchery-produced orange-spotted grouper(Epinephelus coioides)and humpback grouper(Cromileptes altivelis)(Pisces: Serranidae, Epinephelinae). Aquaculture, 2009, 287: 191-202
[117]
18 Harikrishnan R, Balasundaram C, Heo M. Fish health aspects in grouper aquaculture. Aquaculture, 2011, 320: 1-21
[118]
19 Chevassus B, Devaux A, Chourrout D, et al. Production of YY rainbow trout males by self-fertilization of induced hermaphrodites. J Hered, 1988, 79: 89-92
[119]
20 Schultz R J. Unisexual fish: laboratory synthesis of a “species”. Science, 1973, 179: 180-181
[120]
21 Stanley J G. Production of hybrid, androgenetic, and gynogenetic grass carp and carp. Trans Am Fish Soc, 1976, 105: 10-16
[121]
22 Neaves W B, Baumann P. Unisexual reproduction among vertebrates. Trends Genet, 2011, 27: 81-88
24 Avise J C. Clonality. Oxford: Oxford University Press, 2008
[124]
25 Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol, 2000, 51: 498-506
[125]
26 Yang L, Gui J F. Positive selection on multiple antique allelic lineages of transferrin in the polyploid Carassius auratus. Mol Biol Evol, 2004, 21: 1264-1277
[126]
27 Zhu H P, Ma D M, Gui J F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res, 2006, 14: 767-776
[127]
28 Zhu H P, Gui J F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture, 2007, 265: 109-117
[128]
29 Li F B, Gui J F. Clonal diversity and genealogical relationships of gibel carp in four hatcheries. Anim Genet, 2008, 39: 28-33
[129]
30 Jakovlic I, Gui J F. Recent invasion and low level of divergence between diploid and triploid forms of Carassius auratus complex in Croatia. Genetica, 2011, 139: 789-804
[130]
31 Jiang F F, Wang Z W, Zhou L, et al. High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol Phylogenet Evol, 2013, 66: 350-359
[131]
32 Li X Y, Zhang X J, Li Z, et al. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol Phylogenet Evol. 2014, 78: 96-104
[132]
33 Li X Y, Li Z, Zhang X J, et al. Expression characterization of testicular Dmrt1 in both Sertoli cells and spermatogenic cells of polyploid gibel carp. Gene, 2014, 548: 119-125
[133]
34 Xie J, Wen J J, Chen B, et al. Differential gene expression in fullygrown oocytes between gynogenetic and gonochoristic crucian carps. Gene, 2001, 271: 109-116.
[134]
35 Dong C H, Yang S T, Yang Z A, et al. A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Dev Biol, 2004, 265: 341-354
[135]
36 Peng J X, Xie J L, Zhou L, et al. Evolutionary conservation of Dazl genomic organization and its continuous and dynamic distribution throughout germline development in gynogenetic gibel carp. J Exp Zool Mol Dev Evol, 2009, 312: 855-871
[136]
37 Wu N, Yue H M, Chen B, et al. Histone H2A has a novel variant in fish oocytes. Biol Reprod, 2009, 81: 275-283
[137]
38 Sun M, Li Z, Gui J F. Dynamic distribution of spindlin in nucleoli, nucleoplasm and spindle from primary oocytes to mature eggs and its critical function for oocyte-to-embryo transition in gibel carp. J Exp Zool A Ecol Genet Physiol, 2010, 313: 461-473
[138]
39 Yue H M, Li Z, Wu N, et al. Oocyte-specific H2A variant H2af1o is required for cell synchrony before mid-blastula transition in early zebrafish embryos. Biol Reprod, 2013, 89: 82
[139]
40 Mei J, Yue H M, Li Z, et al. C1q-like factor, a target of miR-430, regulates primordial germ cell development in early embryos of Carassius auratus. Int J Biol Sci, 2014, 10: 15-24
[140]
41 Wang Z W, Zhu H P, Wang D, et al. A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp. BMC Res Notes, 2011, 4: 82
[141]
42 Zhai Y H, Zhou L, Wang Y, et al. Proliferation and resistance difference of a liver-parasitized myxosporean in two different gynogenetic clones of gibel carp. Parasitol Res, 2014, 113: 1331-1341
[142]
43 Leinonen T, Cano J M, Meril? J. Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus. Heredity (Edinb), 2011, 106: 218-227
[143]
44 Dean R, Mank J E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol, 2014, 27: 1443-1453
[144]
45 Wang D, Mao H L, Chen H X, et al. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations. Anim Genet, 2009, 40: 978-981
[145]
46 Beardmore J A, Mair G C, Lewis R I. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture, 2001, 197: 283-301
[146]
47 Melard C. Production of a high percentage of male offspring with 17α-ethynylestradiol sex-reversed Oreochromis aureus. I. Estrogen sex-reversal and production of F2 pseudofemales. Aquaculture, 1995, 130: 25-34
49 Goudie C A. Production of Monosex Populations: the Channel Catfish Model. In: Davis K B, Simco B A. International Fish Physiology Symposium. Vancouver: 1994. 150-155
51 Gao Z, Wang H P, Rapp D, et al. Gonadal sex differentiation in the bluegill sunfish Lepomis macrochirus and its relation to fish size and age. Aquaculture, 2009, 294:138-146
[151]
52 Walker S P W, Ryen C A, McCormick M I. Rapid larval growth predisposes sex change and sexual size dimorphism in a protogynous hermaphrodite, Parapercis snyderi Jordan & Starks 1905. J Fish Biol, 2007, 71: 1347-1357
[152]
53 Farley J H, Eveson J P, Davis T L, et al. Demographic structure, sex ratio and growth rates of southern bluefin tuna (Thunnus maccoyii) on the spawning ground. PLoS One, 2014, 9: e96392.
55 Afeworki Y, Videler J J, Berhane Y H, et al. Seasonal and life-phase related differences in growth in Scarus ferrugineus on a southern Red Sea fringing reef. J Fish Biol, 2014, 84: 1422-1438
[155]
56 吴清江, 桂建芳. 鱼类遗传育种工程. 上海: 上海科学技术出版社, 1999
[156]
57 Yoneda M, Kurita Y, Kitagawa D, et al. Age validation and growth variability of Japanese flounder Paralichthys olivaceus off the Pacific coast of northern Japan. Fisheries Science, 2007, 73: 585-592
[157]
58 Fischer A J, Thompson B A. The age and growth of southern flounder, Paralichthys lethostigma, from Louisiana estuarine and offshore waters. B Mar Sci, 2004, 75: 63-77
[158]
59 Bye V J, Lincoln R F. Commercial methods for the control of sexual maturation in rainbow trout (Salmo gairdneri R.). Aquaculture, 1986, 57: 299-309
[159]
60 Johnstone R, Youngson A F. The progeny of sex-inverted female Atlantic salmon (Salmo salar L.). Aquaculture, 1984, 37: 179-182
[160]
61 Saillant E, Fostier A, Menu B, et al. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture, 2001, 202: 371-387
[161]
62 Headley H C, Lauer T E. Density-dependent growth of yellow perch in southern Lake Michigan, 1984~2004. N Am J Fish Manage, 2008, 28: 57-69
[162]
63 Bj?rnsson B. The growth pattern and sexual maturation of Atlantic halibut (Hippoglossus hippoglossus L.) reared in large tanks for 3 years. Aquaculture, 1995, 138: 281-290
[163]
64 Hunter G A, Donaldson E M, Stoss J, et al. Production of monosex female groups of chinook salmon (Oncorhynchus tshawytscha) by the fertilization of normal ova with sperm from sex-reversed females. Aquaculture, 1983, 33: 355-364
[164]
65 Donaldson E M. Manipulation of reproduction in farmed fish. Anim Reprod Sci, 1996, 42: 381-392
[165]
66 Chen S L, Li J, Deng S P, et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol (NY), 2007, 9: 273-280
[166]
67 Degani G, Tzchori I, Yom-Din S, et al. Growth differences and growth hormone expression in male and female European eels [Anguilla anguilla (L.)]. Gen Comp Endocrinol, 2003, 134: 88-93
69 Pongthana N, Penman D J, Baoprasertkul P, et al. Monosex female production in the silver barb (Puntius gonionotus Bleeker). Aquaculture, 1999, 173: 247-256
[169]
70 Munday P L, Buston P M, Warner R R. Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol, 2006, 21: 89-95
[170]
71 Rosenthal G G, Evans C S. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc Natl Acad Sci USA, 1998, 95: 4431-4436
[171]
73 Desjardins J K, Fernald R D. Fish sex: why so diverse? Curr Opin Neurobiol. 2009, 19: 648-653
[172]
74 Bonduriansky R, Chenoweth S F. Intralocus sexual conflict. Trends Ecol Evol, 2009, 24: 280-288
[173]
75 Parsch J, Ellegren H. The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet, 2013, 14: 83-87
[174]
76 Williams T M, Carroll S B. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet, 2009, 10: 797-804
[175]
77 Fairbairn D J, Roff D A. The quantitative genetics of sexual dimorphism: assessing the importance of sex-linkage. Heredity (Edinb), 2006, 97: 319-328
[176]
78 Bachtrog D. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration. Nat Rev Genet, 2013, 14: 113-124
[177]
145 Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol, 1999, 11: 699-704
[178]
146 Liu S, Li Z, Gui J F. Fish-specific duplicated Dmrt2b contributes to a divergent function through Hedgehog pathway and maintains left-right asymmetry establishment function. PLoS One, 2009, 4: e7261
[179]
147 Guo B, Zou M, Wagner A. Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication. Mol Biol Evol, 2012, 29: 3005-3022
[180]
148 Yano A, Nicol B, Jouanno E, et al. The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl, 2013, 6: 486-496
[181]
173 Liu Y X, Wang G X, Liu Y, et al. Genetic verification of doubled haploid Japanese flounder, Paralichthys olivaceus by genotyping telomeric microsatellite loci. Aquaculture, 2012, 324-325: 60-63
[182]
174 Liu Y X, Wang G X, Liu Y, et al. Production and verification of heterozygous clones in Japanese flounder, Paralichthys olivaceus by microsatellite marker. Afr J Biotechnol, 2011, 10: 17088-17094
[183]
175 Liu Y X, Han H Z, Wang Q L, et al. Choice of microsatellite markers for identifying homozygosity of mitotic gynogenetic diploids in Japanese flounder Paralichthys olivaceus. J Fish Biol, 2013, 82: 588-599
[184]
176 Hubbs C, Drewry G E. Occurrence and morphology of a phenotypic male of a gynogenetic fish. Science, 1959, 129: 1227-1229
[185]
177 Nanda I, Schlupp I, Lamatsch D K, et al. Stable inheritance of host species-derived microchromosomes in the gynogenetic fish Poecilia formosa. Genetics, 2007, 177: 917-926
[186]
178 Liu S, Qin Q, Wang Y, et al. Evidence for the formation of the male gynogenetic fish. Mar Biotechnol (NY), 2010, 12: 160-172
[187]
179 Shen Z, Wang H. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol, 2014, 46:26
[188]
180 Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish. Int J Biol Sci, 2013, 9: 1043-1049
[189]
181 Ninwichian P, Peatman E, Perera D, et al. Identification of a sex-linked marker for channel catfish. Anim Genet, 2012, 43: 476-477
[190]
182 Kovacs B, Egedi S, Bartfai R, et al. Male-specific DNA markers from African catfish (Clarias gariepinus). Genetica, 2000, 110: 267-276
[191]
183 Felip A, Young W P, Wheeler P A, et al. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2005, 247: 35-43
[192]
184 Koshimizu E, Strussmann C A, Okamoto N, et al. Construction of a genetic map and development of DNA markers linked to the sex-determining locus in the Patagonian pejerrey (Odontesthes hatcheri). Mar Biotechnol (NY), 2010, 12: 8-13
[193]
185 Olmstead A W, Villeneuve D L, Ankley G T, et al. A method for the determination of genetic sex in the fathead minnow, Pimephales promelas, to support testing of endocrine-active chemicals. Environ Sci Technol, 2011, 45: 3090-3095
[194]
186 Shikano T, Herczeg G, Merila J. Molecular sexing and population genetic inference using a sex-linked microsatellite marker in the nine-spined stickleback (Pungitius pungitius). BMC Res Notes, 2011, 4: 119
[195]
187 Chen J J, Wang Y L, Yue Y Y, et al. A novel male-specific DNA sequence in the common carp, Cyprinus carpio. Mol Cell Probes, 2009, 23: 235-239
[196]
188 Lee B Y, Coutanceau J P, Ozouf-Costaz C, et al. Genetic and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus). Mar Biotechnol (NY), 2011, 13: 557-562
[197]
189 Sun Y L, Jiang D N, Zeng S, et al. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture, 2014, 433: 19-27.
[198]
190 Vale L, Dieguez R, Sanchez L, et al. A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Mol Biol Rep, 2014, 41: 1501-1509
[199]
191 Vinas A, Taboada X, Vale L, et al. Mapping of DNA sex-specific markers and genes related to sex differentiation in Turbot (Scophthalmus maximus). Mar Biotechnol (NY), 2012, 14: 655-663
[200]
192 Ma H Y, Chen S L, Yang J F, et al. Isolation of sex-specific AFLP markers in Spotted Halibut (Verasper variegatus). Environ Biol Fish, 2010, 88: 9-14
[201]
193 Galindo H M, Loher T, Hauser L. Genetic sex identification and the potential evolution of sex determination in Pacific halibut (Hippoglossus stenolepis). Mar Biotechnol (NY), 2011, 13: 1027-1037
[202]
194 Fuji K, Yoshida K, Hattori K, et al. Identification of the sex-linked locus in yellowtail, Seriola quinqueradiata. Aquaculture, 2010, 308: S51-S55
[203]
195 Xu D, Lou B, Xu H, et al. Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus. Mar Biotechnol (NY), 2013, 15: 221-229
[204]
72 Casalini M, Agbali M, Reichard M, et al. Male dominance, female mate choice, and intersexual conflict in the rose bitterling (Rhodeus ocellatus). Evolution. 2009, 63: 366-376