全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

针对DNA长片段靶标的锌指筛选体系

DOI: 10.1360/052014-77, PP. 1061-1072

Keywords: 锌指蛋白,单杂交筛选,DNA-蛋白相互作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

锌指蛋白能够特异性识别目标DNA序列,常被作为分子靶向因子用于定点核酸编辑以及定点转录调控等方面,具有十分广泛的应用前景.然而,目前常规采用的实验方法得到的锌指蛋白通常结合的目标DNA序列较短,结合能力不强,因而一直难以高效运用在核酸序列与调控蛋白在基因组上的原位互作等方面的研究中.为了解决这个问题,本研究构建了一个高通量筛选系统,利用N4噬菌体gp8毒蛋白和LacZ作为报告基因,以300bp以上的DNA长片段为靶标,来筛选能够结合多位点的锌指蛋白组合,提高锌指蛋白应用的精确度以及效率.该系统针对小鼠Nrxn-1a启动子区域进行了锌指蛋白文库筛选,得到了具有序列选择特异性的混合锌指蛋白库,并对筛选结果进行了初步功能验证.研究表明,本系统具有简便快捷的特点,不仅大幅度缩短了筛选时间,而且减少了因靶标序列DNA片段较长而不得不反复设计多位点结合锌指蛋白造成的成本浪费;筛选得到的锌指蛋白库具有较高的长片段DNA靶标结合能力和一定的序列特异性,并且能够在真核细胞内特异地结合目标DNA序列.因此,本研究建立的新型锌指筛选系统不仅可以广泛应用于高通量筛选,而且在DNA-蛋白相互作用的研究中也具有重要意义.

References

[1]  1 Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem, 2010, 79: 213-231
[2]  2 Miller J, Mclachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J, 1985, 4: 1609-1614
[3]  3 Gonzalez B, Schwimmer L J, Fuller R P, et al. Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc, 2010, 5: 791-810
[4]  4 Beerli R R, Barbas C F 3rd. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol, 2002, 20: 135-141
[5]  5 Beerli R R, Segal D J, Dreier B, et al. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA, 1998, 95: 14628-14633
[6]  6 Isalan M. Zinc-finger nucleases: how to play two good hands. Nat Methods, 2012, 9: 32-34
[7]  7 Gaj T, Gersbach C A, Barbas C F 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405
[8]  8 Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev, 2009, 61: 513-526
[9]  9 Sander J D, Dahlborg E J, Goodwin M J, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods, 2011, 8: 67-69
[10]  10 Sander J D, Zaback P, Joung J K, et al. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res, 2007, 35: W599-W605
[11]  11 Sander J D, Maeder M L, Reyon D, et al. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res, 2010, 38: W462-W468
[12]  12 Mandell J G, Barbas C F 3rd. Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res, 2006, 34: W516-W523
[13]  13 Jamieson A C, Kim S H, Wells J A. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry, 1994, 33: 5689-5695
[14]  14 Choo Y, Klug A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc Natl Acad Sci USA, 1994, 91: 11163-11167
[15]  15 Rebar E J, Pabo C O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science, 1994, 263: 671-673
[16]  16 Choo Y, Klug A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci USA, 1994, 91: 11168-11172
[17]  17 Klug S J, Famulok M. All you wanted to know about SELEX. Mol Biol Rep, 1994, 20: 97-107
[18]  18 Roulet E, Busso S, Camargo A A, et al. High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol, 2002, 20: 831-835
[19]  19 李战伟, 王昕, 任刚, 等. 人工锌指蛋白随机库的构建及其在锌指核酸酶筛选中的应用. 西北农业学报, 2012, 21: 1-10
[20]  20 Liu X, Noll D M, Lieb J D, et al. DIP-chip: rapid and accurate determination of DNA-binding specificity. Genome Res, 2005, 15: 421-427
[21]  21 Bulyk M L, Huang X, Choo Y, et al. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci USA, 2001, 98: 7158-7163
[22]  22 Mukherjee S, Berger M F, Jona G, et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet, 2004, 36: 1331-1339
[23]  23 Dove S L, Joung J K, Hochschild A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature, 1997, 386: 627-630
[24]  24 Dove S L, Hochschild A. Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev, 1998, 12: 745-754
[25]  25 Hu J C, Kornacker M G, Hochschild A. Escherichia coli one- and two-hybrid systems for the analysis and identification of protein-protein interactions. Methods, 2000, 20: 80-94
[26]  26 Meng X, Brodsky M H, Wolfe S A. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol, 2005, 23: 988-994
[27]  27 Joung J K, Ramm E I, Pabo C O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA, 2000, 97: 7382-7387
[28]  28 Durai S, Bosley A, Abulencia A B, et al. A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen, 2006, 9: 301-311
[29]  29 Hurt J A, Thibodeau S A, Hirsh A S, et al. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci USA, 2003, 100: 12271-12276
[30]  30 Zhu T, Tian J, Zhang S, et al. Identification of the transcriptional regulator NcrB in the nickel resistance determinant of Leptospirillum ferriphilum UBK03. PLoS One, 2011, 6: 0017367
[31]  31 Yano S T, Rothman-Denes L B. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Mol Microbiol, 2011, 79: 1325-1338
[32]  32 Segal D J, Dreier B, Beerli R R, et al. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5'' -GNN-3'' DNA target sequences. Proc Natl Acad Sci USA, 1999, 96: 2758-2763
[33]  33 Dreier B, Fuller R P, Segal D J, et al. Development of zinc finger domains for recognition of the 5'' -CNN-3'' family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem, 2005, 280: 35588-35597
[34]  34 Seipel K, Georgiev O, Schaffner W. Different activation domains stimulate transcription from remote (‘enhancer'') and proximal (‘promoter'') positions. EMBO J, 1992, 11: 4961-4968
[35]  35 Jouvenot Y, Ginjala V, Zhang L, et al. Targeted regulation of imprinted genes by synthetic zinc-finger transcription factors. Gene Ther, 2003, 10: 513-522

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133