全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光合自养缺陷型小球藻的筛选及生物能源应用

DOI: 10.1360/052014-147, PP. 1043-1050

Keywords: 叶绿素,突变体,Chlorellaprotothecoides,类囊体膜,油脂生产能力,生物柴油

Full-Text   Cite this paper   Add to My Lib

Abstract:

小球藻Chlorellaprotothecoides(C.protothecoides)是潜在的、可用于工业生产生物柴油的高产油微藻.本研究通过体外诱变的手段,获得了一株完全不能进行光合自养生长的突变体Al64.利用尼罗红染色和叶绿素自发荧光分析和电子显微镜分析细胞的亚显微结构,结果显示该突变体中叶绿体严重退化,其中类囊体膜结构缺失,导致该突变体缺乏叶绿素,无法进行光合自养生长.在富糖富氮的培养条件下,该光合自养缺陷型突变体的细胞密度和油脂含量比野生型细胞分别高5.54%和6.76%,分析还发现,该突变体产油能力为0.158gL-1h-1,比野生型提高12.8%.本文通过缺失光合作用突变体的构建,在异养高氮条件下实现了生物量及细胞内油脂含量的同步提高,为进一步提高微藻生产生物柴油的产量提供了新的研究平台.

References

[1]  17 Nicholson-Guthrie C S, Guthrie G D. Accumulation of protoporphyrin-IX by the chlorophyll-less y-y mutant of Chlamydomonas reinhardtii. Arch Biochem Biophys, 1987, 252: 570-573
[2]  18 Gergis M S. A colorless Chlorella mutant containing thylakoids. Arch Mikrobiol, 1969, 68: 187-190
[3]  19 Anderson J M. The role of chlorophyll-protein complexes in the function and structure of chloroplast thylakoids. Mol Cell Biochem, 1982, 46: 161-172
[4]  1 Ma F, Hanna M A. Biodiesel production: a review. Bioresour Technol, 1999, 70: 1-15
[5]  2 Kai T, Mak G L, Wada S, et al. Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization. Bioresour Technol, 2014, 163: 360-363
[6]  3 Da Rós P C M, Freitas L, Perez V H, et al. Enzymatic synthesis of biodiesel from palm oil assisted by microwave irradiation. Bioprocess Biosyst Eng, 2013, 36: 443-451
[7]  4 Misra M, Misra A N. Jatropha: the biodiesel plant biology, tissue culture and genetic transformation—a review. Int J Pure Appl Sci Technol, 2010, 1: 11-24
[8]  5 Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25: 294-306
[9]  6 Razeghifard R. Algal biofuels. Photosynth Res, 2013, 117: 207-219
[10]  7 Xiong W, Li X, Xiang J, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol, 2008, 78: 29-36
[11]  8 Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev, 2010, 14: 217-232
[12]  9 Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol, 2006, 126: 499-507
[13]  10 Wang Y, Rischer H, Eriksen N T, et al. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour Technol, 2013, 144: 608-614
[14]  11 Perrine Z, Negi S, Sayre R T. Optimization of photosynthetic light energy utilization by microalgae. Algal Res, 2012, 1: 134-142
[15]  12 Wu Q Y, Yin S, Sheng G Y, et al. New discoveries in study on hydrocarbons from thermal degradation of heterotrophically yellowing algae. Sci Chin B Chemi, 1994, 37: 326-335
[16]  13 Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res, 2002, 73: 149-156
[17]  14 Audrey M, Glauert M, Lewis P R. Biological specimen preparation for transmission electron microscopy. Princeton: Princeton University Press. 1998
[18]  15 Flynn T, Ghirardi M L, Seibert M. Accumulation of O2 -tolerant phenotypes in H2-producing strains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis and selection. Int J Hydrogen Energy, 2002, 27: 1421-1430
[19]  16 Xiong W, Gao C F, Yan D, Wu C, Wu Q Y. Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 2010, 101: 2287-2293
[20]  20 Ringo D L. Electron microscopy of Astasia longa. J Protozool, 1963, 10: 167-173
[21]  21 Lang N J. Electron-microscopic demonstration of plastids in polytoma. J Protozool, 1963, 10: 333-339

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133