12 Wang J, Chai A, Zhou Q, et al. Chronic clomipramine treatment reverses core symptom of depression in subordinate tree shrews. PLoS One, 2013, 8: e80980
[9]
13 Savard C, Tartaglione E V, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology, 2013, 57: 81-92
[10]
14 Tian Y, Bi J, Shui G, et al. Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genetics, 2011, 7: e1001364
16 Van Rompay K K. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses, 2012, 28: 16-35
[13]
17 Ling B, Veazey R S, Luckay A, et al. SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS, 2002, 16: 1489-1496
[14]
18 Zhou Y, Bao R, Haigwood N L, et al. SIV infection of rhesus macaques of Chinese origin: a suitable model for HIV infection in humans. Retrovirology, 2013, 10: 89
[15]
19 Xia H J, Zhang G H, Ma J P, et al. Dendritic cell subsets dynamics and cytokine productions in SIVmac239 infected Chinese rhesus macaques. Retrovirology, 2010, 7: 102
[16]
20 Xia H J, Ma J P, Zhang G H, et al. Effect of plasma viremia on apoptosis and immunophenotype of dendritic cells subsets in acute SIVmac239 infection of Chinese rhesus macaques. PLoS One, 2011, 6: e29036
[17]
21 Wang H, Zhuang K, Liu L, et al. Acute infection of Chinese macaques by a CCR5-tropic SHIV carrying a primary HIV-1 subtype B'' envelope. J Acquir Immune Defic Syndr, 2010, 53: 285-291
[18]
22 Zhang J, Ye Y Q, Wang Y, et al. M. tuberculosis H37Rv infection of Chinese rhesus macaques. J Neuroimmune Pharmacol, 2011, 6: 362-370
[19]
23 Liao C H, Kuang Y Q, Liu H L, et al. A novel fusion gene mnTRIMCyp in pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS, 2007, 21: S19-S26
[20]
24 Kuang Y Q, Tang X, Liu F L, et al. Genotyping of TRIM5 locus in Northern pig-tailed macaques (Macaca leonina), a primate species susceptible to human immunodeficiency virus type1 infection. Retrovirology, 2009, 6: 58
[21]
25 Evans D T, Silvestri G. Nonhuman primate models in AIDS research. Curr Opin HIV AIDS, 2013, 8: 255-261
[22]
26 Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife, 2012, 1: e00049
[23]
27 Zhong G, Yan H, Wang H, et al. Sodium taurocholate cotransporting polypeptide mediates woolly monkey hepatitis B virus infection of Tupaia hepatocytes. J Virol, 2013, 87: 7176-7184
[24]
28 Chen H, Pei R, Chen X. Different responses of two highly permissive cell lines upon HCV infection. Virol Sin, 2013, 28: 202-208
[25]
29 Arias C A, Murray B E. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. New Engl J Med 2009, 360: 439-443
[26]
30 Poole D, Bertolini G, Garattini S. Withdrawal of ‘Xigris'' from the market: old and new lessons. J Epidemiol Community Health, 2012, 66: 571-572
[27]
31 Rittirsch D, Hoesel L M, Ward P A. The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol, 2007, 81: 137-143
[28]
44 Demands for rhesus monkeys in biomedical research: a workshop report. ILAR J, 2003, 44: 222-235
[29]
45 Liu H, Chen Y, Niu Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell, 2014, 14: 323-328
[30]
46 Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156: 836-843
4 Huse J T, Holland E C. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol, 2009, 19: 132-143
[33]
1 徐林. 人类疾病的动物模型. 动物学研究, 2011, 32: 1-3
[34]
2 Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823
[35]
3 Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 53: 910-918
[36]
32 Raven K. Rodent models of sepsis found shockingly lacking. Nat Med, 2012, 18: 998
34 Gibert Y, Trengove M C, Ward A C. Zebrafish as a genetic model in pre-clinical drug testing and screening. Curr Med Chem. 2013, 20: 2458-2466
[39]
35 Shin J T, Fishman M C. From Zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet, 2002, 3: 311-340
[40]
36 North T E, Goessling W, Walkley C R, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447: 1007-1011
[41]
37 Sliwkowski M X, Mellman I. Antibody therapeutics in cancer. Science, 2013, 341: 1192-1198
[42]
38 Pangalos M N, Schechter L E, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov, 2007, 6: 521-532
[43]
39 Plenge R M, Scolnick E M, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov, 2013, 12: 581-594
[44]
40 Niu Y, Yu Y, Bernat A, et al. Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simianimmunodeficiency virus-based vector. Proc Natl Acad Sci USA, 2010, 107: 17663-17667