全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

年龄对布氏田鼠和长爪沙鼠能量代谢的影响

DOI: 10.1360/N052014-0094, PP. 920-928

Keywords: 能量平衡,适应性产热,褐色脂肪组织,衰老,啮齿动物

Full-Text   Cite this paper   Add to My Lib

Abstract:

能量代谢对动物的存活和繁殖等生活史特征具有重要的调控作用.布氏田鼠(Lasiopodomysbrandtii)和长爪沙鼠(Merionesunguiculatus)是内蒙古草原同域分布的两种啮齿动物,前者的体重和野外寿命要明显小于后者,这符合寿命随体型增大而增加的一般规律.本研究进一步探讨了随年龄增加,两种动物的能量代谢特征的改变.发现布氏田鼠的非颤抖性产热能力随年龄增加而降低,而长爪沙鼠的非颤抖性产热能力随年龄增加而保持稳定.布氏田鼠的摄食能力和身体脂肪储备随年龄增加而降低;而长爪沙鼠摄食能力不随年龄改变,脂肪储备则随年龄增加而增加.长爪沙鼠的基础代谢水平低于布氏田鼠,其繁殖成熟时间更长.本研究推测,这些随年龄而变的生理特征反映了两种动物不同的生活史对策:布氏田鼠更倾向于尽快繁殖,其他与生存相关的生理指标随年龄增加而迅速降低,而长爪沙鼠更倾向于将能量投资到较晚期的存活和繁殖.

References

[1]  3 Roberts S B, Rosenberg I. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev, 2006, 86: 651-667
[2]  4 Speakman J R. Body size, energy metabolism and lifespan. J Exp Biol, 2005, 208: 1717-1730
[3]  5 Manini T M. Energy expenditure and aging. Ageing Res Rev, 2010, 9: 1-11
[4]  6 Pearl R. The Rate of Living. New York: University Press, 1928
[5]  7 Lints F A. The rate of living theory revisited. Gerontology, 1989, 35: 36-57
[6]  8 Kozak L P, Harper M E. Mitochondrial uncoupling proteins in energy expenditure. Annu Rev Nutr, 2000, 20: 339-363
[7]  9 McNab B K. The Physiological Ecology of Vertebrates: A View from Energetics. New York: Cornell University Press, 2002
[8]  10 Cruz-Neto A P, Bozinovic F. The relationship between diet quality and basal metabolic rate in endotherms: insights from intraspecific analysis. Physiol Biochem Zool, 2004, 77: 877-889
[9]  11 Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev, 2004, 84: 277-359
[10]  12 Bouwhuis S, Sheldon B C, Verhulst S. Basal metabolic rate and the rate of senescence in the great tit. Funct Ecol, 2011, 25: 829-838
[11]  13 Florez-Duquet M, McDonald R B. Cold-induced thermoregulation and biological aging. Physiol Rev, 1998, 78: 339-358
[12]  14 Monaghan P, Charmantier A, Nussey D H, et al. The evolutionary ecology of senescence. Funct Ecol, 2008, 22: 371-378
[13]  15 Ricklefs R E. The evolution of senescence from a comparative perspective. Funct Ecol, 2008, 22: 379-392
[14]  16 Wang D H, Wang Z W, Wang Y S, et al. Seasonal changes of thermogenesis in Mongolian gerbils (Meriones unguiculatus) and Brandt''s voles (Microtus brandti). Comp Biochem Physiol A, 2003, 134: S96
[15]  17 Wang D H, Wang Y S, Wang Z W. Metabolism and thermoregulation in the Mongolian gerbil Meriones unguiculatus. Acta Theriol, 2000, 45: 183-192
[16]  18 张洁, 周庆强, 钟文勤, 等. 布氏田鼠种群年龄的研究. 动物学报, 1978, 24: 344-358
[17]  19 Stuermer I W, Tittmann C, Schilling C, et al. Reproduction of wild Mongolian gerbils bred in the laboratory with respect to generation and season 1. Morphological changes and fertility lifespan. Anim Sci, 2006, 82: 377-387
[18]  20 Liu H, Wang D H, Wang Z W. Energy requirements during reproduction in female Brandt''s voles (Microtus brandtii). J Mammal, 2003, 84: 1410-1416
[19]  21 Zhang X Y, Wang D H. Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt''s voles Lasiopodomys brandtii. J Exp Biol, 2007, 210: 512-521
[20]  22 李庆芬, 黄晨西. 布氏田鼠静止代谢率特征. 兽类学报, 1994, 14: 217-220
[21]  23 Pan Q, Li M, Shi Y L, et al. Lipidomics reveals mitochondrial membrane remodeling associated with acute thermoregulation in a rodent with a wide thermoneutral zone. Lipids, 2014, doi: 10.1007/s11745-014-3900-0
[22]  1 Sacher G A. Relation of lifespan to brain weight and body weight in mammals. In: Wolstenholme G E W, O''Conner M, eds. Ciba Foundation Colloquia on Ageing. Chichester: John Wiley & Son, 2008. 115-133
[23]  2 Pagel M D, Harvey P H. Taxonomic differences in the scaling of brain on body weight among mammals. Science, 1989, 244: 1589-1593
[24]  24 Heldmaier G. Nonshivering thermogenesis and body dize in mammals. Z Vergl Physiol, 1971, 73: 222-248
[25]  25 王建梅, 王德华. 不同去甲肾上腺素剂量下布氏田鼠非颤抖性产热比较. 兽类学报, 2006, 26: 84-88
[26]  26 Wiesinger H, Heldmaier G, Buchberger A. Effect of photoperiod and acclimation temperature on nonshivering thermogenesis and GDP-binding of brown fat mitochondria in the Djungarian hamster Phodopus s. sungorus. Pflugers Arch, 1989, 413: 667-672
[27]  27 Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem, 1951, 193: 265
[28]  28 Zhang X Y, Zhang Q, Wang D H. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt''s voles (Lasiopodomys brandtii). PLoS One, 2011, 6: e19913
[29]  29 Li Y G, Yan Z C, Wang D H. Physiological and biochemical basis of basal metabolic rates in Brandt''s voles (Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A, 2010, 157: 204-211
[30]  30 Lowell B B, Spiegelman B M. Towards a molecular understanding of adaptive thermogenesis. Nature, 2000, 404: 652-660
[31]  31 Cox R M, Parker E U, Cheney D M, et al. Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Funct Ecol, 2010, 24: 1262-1269
[32]  32 宛新荣, 王梦军, 王广和, 等. 布氏田鼠标志种群的繁殖参数. 兽类学报, 2002, 22: 116-122
[33]  33 刘志龙, 孙儒泳. 布氏田鼠种群繁殖特征研究. 兽类学报, 1993, 13: 114-122
[34]  34 刘伟, 宛新荣, 王广和, 等. 不同季节长爪沙鼠同生群的繁殖特征及其在生活史对策中的意义. 兽类学报, 2004, 24: 229-234

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133