1 Raoult D, Berbis P, Roux V, et al. A new tick-transmitted disease due to Rickettsia slovaca. Lancet, 1997, 350: 112-113
[2]
2 Fournier P E, Dumler J S, Greub G, et al. Gene sequence-based criteria for identification of new rickettsia isolates and description of Rickettsia heilongjiangensis sp. Nov. J Clin Microbiol, 2003, 41: 5456-5465
4 Shpynov S N, Fournier P E, Rudakov N V, et al. Molecular identification of a collection of spotted fever group rickettsiae obtained from patients and ticks from Russia. Am J Trop Med Hyg, 2006, 74: 440-443
[5]
5 Mediannikov O, Makarova V, Tarasevich I, et al. Isolation of rickettsia heilongjiangensis strains from humans and ticks and its multispacer typing. Clin Microbiol Infect, 2009, 15: 288-289
[6]
6 Mediannikov O, Sidelnikov Y, Ivanov L, et al. Acute tick-borne rickettsiosis caused by Rickettsia heilongjiangensis in Russian Far East. Emerg Infect Dis, 2004, 10: 810-817
[7]
7 Ando S, Kurosawa M, Sakata A, et al. Human Rickettsia heilongjiangensis infection, Japan. Emerg Infect Dis, 2010, 16: 1306-1308
[8]
8 Duan C, Meng Y, Wang X, et al. Exploratory study on pathogenesis of far-eastern spotted fever. Am J Trop Med Hyg, 2011, 85: 504-509
[9]
9 Efron P, Moldawer L. Sepsis and the dendritic cell. Shock, 2003, 20: 386-401
[10]
10 Tsujimoto H, Uchida T, Efron P A, et al. Flagellin enhances NK cell proliferation and activation directly and through dendritic cell-NK cell interactions. J Leukoc Biol, 2005, 78: 888-897
[11]
11 Anacker R L, List R H, Mann R E, et al. Characterization of monoclonal antibodies protecting mice against Rickettsia rickettsii. J Infect Dis, 1985, 151: 1052-1060
[12]
12 Xu W, Raoult D. Distribution of immunogenic epitopes on the two major immunodominant proteins (rOmpA and rOmpB) of Rickettsia conorii among the other rickettsiae of the spotted fever group. Clin Diagn Lab Immunol, 1997, 4: 753-763
[13]
13 Diaz-Montero C, Feng H, Crocquet-Valdes P, et al. Identification of protective components of two major outer membrane proteins of spotted fever group rickettsiae. Am J Trop Med Hyg, 2001, 65: 371-378
[14]
14 Wei Y, Wang X, Xiong X, et al. Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. J Infect Dis, 2011, 203: 283-291
[15]
15 Xiong X, Meng Y, Wang X, et al. Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. Vaccine, 2012, 30: 6809-6815
[16]
16 Li Q, Niu D, Wen B, et al. Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann NY Acad Sci, 2005, 1063: 130-142
[17]
17 Wang Y, Xiong X, Wu D, et al. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs) pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs. BMC Immunol, 2011, 12: 52
[18]
18 Lutz M, Kukutsch N, Ogilvie A, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999, 223: 77-92
[19]
19 Li H, Lenz B, Walker D H. Protective monoclonal antibodies recognize heat-labile epitopes on surface proteins of spotted fever group rickettsiae. Infect Immun, 1988, 56: 2587-2593
[20]
20 Anacker R L, List R, Mann R, et al. Antigenic heterogeneity in high-and low-virulence strains of Rickettsia rickettsii revealed by monoclonal antibodies. Infect Immun, 1986, 51: 653-660
[21]
21 Sumner J, Sims K, Jones D, et al. Protection of guinea-pigs from experimental rocky mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine, 1995, 13: 29-35
[22]
22 Vishwanath S, McDonald G A, Watkins N G. A recombinant Rickettsia conorii vaccine protects guinea pigs from experimental boutonneuse fever and Rocky Mountain spotted fever. Infect Immun, 1990, 58: 646-653
[23]
23 Bourgeois A, Dasch G. The species-specific surface protein antigen of rickettsia typhi: immunogenicity and protective efficacy in guinea pigs. In: Burgdorfer W, Anacker R L, eds. Rickettsiae and Rickettsial Diseases. New York: Academic Press, 1981. 71-80
[24]
24 Dasch G, Bourgeois A. Antigens of the typhus group of rickettsiae: importance of the species-specific surface protein antigens in eliciting immunity. In: Burgdorfer W, Anacker R L, eds. Rickettsiae and Rickettsial Diseases. New York: Academic Press, Inc, 1981. 61-69
[25]
25 Beati L, Kelly P, Mason P, et al. Species-specific BALB/c mouse antibodies to rickettsiae studied by western blotting. FEMS Microbiol Lett, 1994, 119: 339-344
[26]
26 Crocquet-Valdes P, Diaz-Montero C, Feng H, et al. Immunization with a portion of rickettsial outer membrane protein a stimulates protective immunity against spotted fever rickettsiosis. Vaccine, 2001, 20: 979-988
[27]
27 Li Z, Diaz-Montero C M, Valbuena G, et al. Identification of CD8 T-lymphocyte epitopes in OmpB of Rickettsia conorii. Infect Immun, 2003, 71: 3920-3926
[28]
28 Jordan J M, Woods M E, Feng H M, et al. Rickettsiae-stimulated dendritic cells mediate protection against lethal rickettsial challenge in an animal model of spotted fever rickettsiosis. J Infect Dis, 2007, 196: 629-638
[29]
29 Rothoeft T, Gonschorek A, Bartz H, et al. Antigen dose, type of antigen-presenting cell and time of differentiation contribute to the T helper 1/T helper2 polarization of naive t cells. Immunology, 2003, 110: 430-439