全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黑龙江立克次体重组外膜蛋白B激活树突状细胞诱导C3H/HeN小鼠特异性免疫应答

, PP. 889-898

Keywords: 黑龙江立克次体,树突状细胞,外膜蛋白,保护性免疫

Full-Text   Cite this paper   Add to My Lib

Abstract:

专性胞内寄生的黑龙江立克次体是远东斑点热的病原体,外膜蛋白B(OmpB)是其最主要的表面蛋白抗原.本研究将黑龙江立克次体ompB基因分成4段插入原核表达载体,制备出4个重组OmpB抗原(OmpB-P1,OmpB-P2,OmpB-P3和OmpB-P4).将4个重组OmpB抗原分别刺激体外培养的C3H/HeN小鼠树突状细胞,再将这些抗原激活树突状细胞分别腹腔接种正常C3H/HeN小鼠.接种第14天用黑龙江立克次体攻击小鼠,7天后活杀小鼠并用实时定量PCR检测小鼠主要脏器的立克次体的载量.结果显示,OmpB-P2,OmpB-P3或OmpB-P4激活树突状细胞受体小鼠的立克次体载量显著低于OmpB-P1激活树突状细胞受体小鼠.将不同抗原激活小鼠树突状细胞分别与同源抗原激活小鼠树突状细胞受体小鼠的CD4+和CD8+T细胞体外共培养.用流式细胞仪分析共培养后CD4+和CD8+T细胞的表面分子和细胞因子表达,结果显示,OmpB-P2,OmpB-P3或OmpB-P4抗原激活树突状细胞共培养的CD4+或CD8+T细胞的CD69表达水平高于OmpB-P1激活树突状细胞共培养的T细胞.此外,OmpB-P2,OmpB-P3或OmpB-P4激活树突状细胞共培养的CD4+或CD8+T细胞的TNF-a和IFN-g水平均显著高于OmpB-P1激活树突状细胞共培养的T细胞.本研究结果表明,OmpB-P2,OmpB-P3或OmpB-P4为保护性抗原,其激活的树突状细胞可以有效地诱导T淋巴细胞活化,使CD4+T细胞和CD8+T细胞分别向Th1细胞和Tc1细胞分化,产生高水平TNF-a和IFN-g共同对抗立克次体感染.

References

[1]  1 Raoult D, Berbis P, Roux V, et al. A new tick-transmitted disease due to Rickettsia slovaca. Lancet, 1997, 350: 112-113
[2]  2 Fournier P E, Dumler J S, Greub G, et al. Gene sequence-based criteria for identification of new rickettsia isolates and description of Rickettsia heilongjiangensis sp. Nov. J Clin Microbiol, 2003, 41: 5456-5465
[3]  3 吴益民, 张志强, 王洪军, 等. 中国东北地区远东蜱传斑点热流行病学调查. 中华流行病学杂志, 2008, 29: 1173-1175
[4]  4 Shpynov S N, Fournier P E, Rudakov N V, et al. Molecular identification of a collection of spotted fever group rickettsiae obtained from patients and ticks from Russia. Am J Trop Med Hyg, 2006, 74: 440-443
[5]  5 Mediannikov O, Makarova V, Tarasevich I, et al. Isolation of rickettsia heilongjiangensis strains from humans and ticks and its multispacer typing. Clin Microbiol Infect, 2009, 15: 288-289
[6]  6 Mediannikov O, Sidelnikov Y, Ivanov L, et al. Acute tick-borne rickettsiosis caused by Rickettsia heilongjiangensis in Russian Far East. Emerg Infect Dis, 2004, 10: 810-817
[7]  7 Ando S, Kurosawa M, Sakata A, et al. Human Rickettsia heilongjiangensis infection, Japan. Emerg Infect Dis, 2010, 16: 1306-1308
[8]  8 Duan C, Meng Y, Wang X, et al. Exploratory study on pathogenesis of far-eastern spotted fever. Am J Trop Med Hyg, 2011, 85: 504-509
[9]  9 Efron P, Moldawer L. Sepsis and the dendritic cell. Shock, 2003, 20: 386-401
[10]  10 Tsujimoto H, Uchida T, Efron P A, et al. Flagellin enhances NK cell proliferation and activation directly and through dendritic cell-NK cell interactions. J Leukoc Biol, 2005, 78: 888-897
[11]  11 Anacker R L, List R H, Mann R E, et al. Characterization of monoclonal antibodies protecting mice against Rickettsia rickettsii. J Infect Dis, 1985, 151: 1052-1060
[12]  12 Xu W, Raoult D. Distribution of immunogenic epitopes on the two major immunodominant proteins (rOmpA and rOmpB) of Rickettsia conorii among the other rickettsiae of the spotted fever group. Clin Diagn Lab Immunol, 1997, 4: 753-763
[13]  13 Diaz-Montero C, Feng H, Crocquet-Valdes P, et al. Identification of protective components of two major outer membrane proteins of spotted fever group rickettsiae. Am J Trop Med Hyg, 2001, 65: 371-378
[14]  14 Wei Y, Wang X, Xiong X, et al. Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. J Infect Dis, 2011, 203: 283-291
[15]  15 Xiong X, Meng Y, Wang X, et al. Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. Vaccine, 2012, 30: 6809-6815
[16]  16 Li Q, Niu D, Wen B, et al. Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann NY Acad Sci, 2005, 1063: 130-142
[17]  17 Wang Y, Xiong X, Wu D, et al. Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs) pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs. BMC Immunol, 2011, 12: 52
[18]  18 Lutz M, Kukutsch N, Ogilvie A, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999, 223: 77-92
[19]  19 Li H, Lenz B, Walker D H. Protective monoclonal antibodies recognize heat-labile epitopes on surface proteins of spotted fever group rickettsiae. Infect Immun, 1988, 56: 2587-2593
[20]  20 Anacker R L, List R, Mann R, et al. Antigenic heterogeneity in high-and low-virulence strains of Rickettsia rickettsii revealed by monoclonal antibodies. Infect Immun, 1986, 51: 653-660
[21]  21 Sumner J, Sims K, Jones D, et al. Protection of guinea-pigs from experimental rocky mountain spotted fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine, 1995, 13: 29-35
[22]  22 Vishwanath S, McDonald G A, Watkins N G. A recombinant Rickettsia conorii vaccine protects guinea pigs from experimental boutonneuse fever and Rocky Mountain spotted fever. Infect Immun, 1990, 58: 646-653
[23]  23 Bourgeois A, Dasch G. The species-specific surface protein antigen of rickettsia typhi: immunogenicity and protective efficacy in guinea pigs. In: Burgdorfer W, Anacker R L, eds. Rickettsiae and Rickettsial Diseases. New York: Academic Press, 1981. 71-80
[24]  24 Dasch G, Bourgeois A. Antigens of the typhus group of rickettsiae: importance of the species-specific surface protein antigens in eliciting immunity. In: Burgdorfer W, Anacker R L, eds. Rickettsiae and Rickettsial Diseases. New York: Academic Press, Inc, 1981. 61-69
[25]  25 Beati L, Kelly P, Mason P, et al. Species-specific BALB/c mouse antibodies to rickettsiae studied by western blotting. FEMS Microbiol Lett, 1994, 119: 339-344
[26]  26 Crocquet-Valdes P, Diaz-Montero C, Feng H, et al. Immunization with a portion of rickettsial outer membrane protein a stimulates protective immunity against spotted fever rickettsiosis. Vaccine, 2001, 20: 979-988
[27]  27 Li Z, Diaz-Montero C M, Valbuena G, et al. Identification of CD8 T-lymphocyte epitopes in OmpB of Rickettsia conorii. Infect Immun, 2003, 71: 3920-3926
[28]  28 Jordan J M, Woods M E, Feng H M, et al. Rickettsiae-stimulated dendritic cells mediate protection against lethal rickettsial challenge in an animal model of spotted fever rickettsiosis. J Infect Dis, 2007, 196: 629-638
[29]  29 Rothoeft T, Gonschorek A, Bartz H, et al. Antigen dose, type of antigen-presenting cell and time of differentiation contribute to the T helper 1/T helper2 polarization of naive t cells. Immunology, 2003, 110: 430-439

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133