1 Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 2014, 15: 7-21
[2]
2 Pasquinelli A E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet, 2012, 13: 271-282
[3]
3 Luteijn M J, Ketting R F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet, 2013, 14: 523-534
[4]
4 Esteller M. Non-coding RNAs in human disease. Nat Rev Genet, 2011, 12: 861-874
[5]
5 Castel S E, Martienssen R A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet, 2013, 14: 100-112
[6]
6 Pauli A, Rinn J L, Schier A F. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet, 2011, 12: 136-149
[7]
7 Faghihi M A, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol, 2009, 10: 637-643
[8]
8 Pelechano V, Steinmetz L M. Gene regulation by antisense transcription. Nat Rev Genet, 2013, 14: 880-893
[9]
9 Itoh T, Tomizawa J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci USA, 1980, 77: 2450-2454
[10]
10 Lacatena R M, Cesareni G. Base pairing of RNA I with its complementary sequence in the primer precursor inhibits ColE1 replication. Nature, 1981, 294: 623-626
[11]
11 Spencer C A, Gietz R D, Hodgetts R B. Overlapping transcription units in the dopa decarboxylase region of Drosophila. Nature, 1986, 322: 279-281
[12]
12 Nepveu A, Marcu K B. Intragenic pausing and anti-sense transcription within the murine c-myc locus. Embo J, 1986, 5: 2859-2865
[13]
13 Li K, Ramchandran R. Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget, 2010, 1: 447-452
[14]
14 Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome. Science, 2005, 309: 1564-1566
[15]
15 He Y, Vogelstein B, Velculescu V E, et al. The antisense transcriptomes of human cells. Science, 2008, 322: 1855-1857
[16]
16 Ge X, Wu Q, Jung Y C, et al. A large quantity of novel human antisense transcripts detected by LongSAGE. Bioinformatics, 2006, 22: 2475-2479
[17]
17 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154-156
[18]
18 Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78: 7634-7638
[19]
19 Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282: 1145-1147
[20]
20 Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95: 379-391
[21]
21 Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113: 643-655
[22]
22 Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113: 631-642
[23]
23 Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003, 17: 126-140
[24]
24 Boyer L A, Lee T I, Cole M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122: 947-956
[25]
25 Kanellopoulou C, Muljo S A, Kung A L, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005, 19: 489-501
[26]
26 Wang Y, Medvid R, Melton C, et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 2007, 39: 380-385
[27]
27 Guttman M, Donaghey J, Carey B W, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477: 295-300
[28]
28 Judson R L, Babiarz J E, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol, 2009, 27: 459-461
[29]
29 Loewer S, Cabili M N, Guttman M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet, 2010, 42: 1113-1117
[30]
30 Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 2011, 8: 633-638
[31]
31 Anokye-Danso F, Trivedi C M, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 2011, 8: 376-388
[32]
32 Richards M, Tan S P, Chan W K, et al. Reverse serial analysis of gene expression (SAGE) characterization of orphan SAGE tags from human embryonic stem cells identifies the presence of novel transcripts and antisense transcription of key pluripotency genes. Stem Cells, 2006, 24: 116251173
[33]
33 Sigova A A, Mullen A C, Molinie B, et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA, 2013, 110: 287652881
[34]
34 Osato N, Suzuki Y, Ikeo K, et al. Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics, 2007, 176: 129951306
[35]
35 Ebralidze A K, Guibal F C, Steidl U, et al. PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev, 2008, 22: 2085-2092
[36]
36 Lima W F, Prakash T P, Murray H M, et al. Single-stranded siRNAs activate RNAi in animals. Cell, 2012, 150: 883-894
[37]
37 Yu D, Pendergraff H, Liu J, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell, 2012, 150: 895-908
[38]
38 Lapidot M, Pilpel Y. Genome-wide natural antisense trancription: coupling its regulation to its different regulatory mechanisms. EMBO Rep, 2006, 7: 1216-1222