全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长非编码RNA-Tug1在大脑皮层发育过程中的初步研究

DOI: 10.1360/N052014-00301, PP. 156-164

Keywords: lncRNA,Tug1,神经前体细胞,TALEN基因敲入

Full-Text   Cite this paper   Add to My Lib

Abstract:

哺乳动物大脑皮层发育过程中,神经前体细胞精密有序地产生不同类型的子代细胞,如神经元和胶质细胞.特异转录因子精确激活或抑制性状决定基因在该过程中发挥决定性作用.最近的研究发现,长非编码RNA(lncRNA)在器官发育和疾病发生过程中发挥重要的基因调控功能,但lncRNA在大脑皮层发育过程中发挥的作用尚不清楚.本研究发现,在小鼠大脑皮层发育过程中,lncRNA-Tug1的表达量随着神经元的产生而显著上调.组织原位杂交显示,在皮层发育的几个关键时期,Tug1广泛分布于背侧前脑神经前体细胞及其子代细胞中.应用小鼠子宫内电穿孔技术敲低Tug1,发现Tug1对神经前体细胞的增殖或分化没有显著性影响.本研究构建了特异针对Tug1转录起始位点上游的TALEN表达载体,在培养的小鼠细胞里发现它们具有显著的切割效率.下一步将在Tug1转录起始位点5'端敲入多聚腺苷酸尾(PolyA)信号片段,以构建Tug1失活小鼠模型,研究Tug1在皮层发育过程中的作用,并探索高效建立lncRNA失活小鼠模型的途径.

References

[1]  27 Van Heesch S, Van Iterson M, Jacobi J, et al. Extensive localization of long noncoding RNAs to the cytosol and mono-and polyribosomal complexes. Genome Biol, 2014, 15: R6
[2]  28 Gutschner T, Baas M, Diederichs S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res, 2011, 21: 1944-1954
[3]  29 Sauvageau M, Goff L A, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife, 2013, 2: e01749
[4]  1 Zhou Y. Cortical development and asymmetric cell divisions. Front Biol, 2012, 7: 297-306
[5]  2 Ramon Y, Cajal S. Histology of the Nervous System of Man and Vertebrates. New York: Oxford University Press, 1995
[6]  3 Belgard T G, Marques A C, Oliver P L, et al. A transcriptomic atlas of mouse neocortical layers. Neuron, 2011, 71: 605-616
[7]  4 G?tz M, Huttner W B. The cell biology of neurogenesis. Nat Rev Mol Cell Biol, 2005, 6: 777-788
[8]  5 Wang X, Tsai J W, Lamonica B, et al. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci, 2011, 14: 555-561
[9]  6 Batista P J, Chang H Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013, 152: 1298-1307
[10]  7 Bernstein E, Allis C D. RNA meets chromatin. Genes Dev, 2005, 19: 1635-1655
[11]  8 Li L, Liu B, Wapinski O L, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep, 2013, 5: 3-12
[12]  9 Sun S, Del Rosario B C, Szanto A, et al. Jpx RNA activates Xist by evicting CTCF. Cell, 2013, 153: 1537-1551
[13]  10 Latos P A, Pauler F M, Koerner M V, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science, 2012, 338: 1469-1472
[14]  11 Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491: 454-457
[15]  12 Yoon J H, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell, 2012, 47: 648-655
[16]  13 Kallen A N, Zhou X B, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell, 2013, 52: 101-112
[17]  14 Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147: 358-369
[18]  15 Gong C, Maquat L E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3''UTRs via Alu elements. Nature, 2011, 470: 284-288
[19]  16 Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493: 231-235
[20]  17 Ramos A D, Diaz A, Nellore A, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell, 2013, 12: 616-628
[21]  18 Klattenhoff C A, Scheuermann J C, Surface L E, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 2013, 152: 570-583
[22]  19 Ng S Y, Bogu G K, Soh B S, et al. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell, 2013, 51: 349-359
[23]  20 Young T L, Cepko C L. A role for ligand-gated ion channels in rod photoreceptor development. Neuron, 2004, 41: 867-879
[24]  21 Young T L, Matsuda T, Cepko C L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol, 2005, 15: 501-512
[25]  22 Yang L, Lin C, Liu W, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 2011, 147: 773-788
[26]  23 Zhang Q, Geng P L, Yin P, et al. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev, 2013, 14: 2311-2315
[27]  24 Han Y, Liu Y, Gui Y, et al. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol, 2013, 107: 555-559
[28]  25 Ayoub A E, Oh S, Xie Y, et al. Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci USA, 2011, 108: 14950-14955
[29]  26 Dillman A A, Hauser D N, Gibbs J R, et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci, 2013, 16: 499-506

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133