全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于成熟林生物量整合分析中国森林碳容量和固碳潜力

, PP. 210-222

Keywords: 气候,林龄,格局,中国,成熟林,参考水平,碳容量,固碳潜力

Full-Text   Cite this paper   Add to My Lib

Abstract:

森林是重要的陆地生态系统碳汇.已有研究认为,全球森林碳容量和固碳潜力巨大,但未见专门针对中国森林进行定量评价其碳容量和固碳潜力的研究.本研究收集整理了文献发表和野外调查获得的中国森林生物量数据5841条,并从这些数据中选取了338个林龄在80年及以上的森林样点,建立了中国成熟林生物量数据集.通过分析中国成熟林碳密度的空间格局和影响因素,以成熟林碳密度为参考水平,采用碳密度-气候关系模型、反距离插值法及局部薄盘样条插值法,获得并统计分析了中国森林碳容量,结合中国第六次森林资源清查数据,进一步评估了中国森林固碳潜力.结果显示,中国成熟林碳密度与气温、降水和林龄呈正相关,其水平地带性和垂直地带性均能够从气温和降水的限制性角度得到合理解释.相对保守地来说,中国现有森林碳容量为19.87PgC,固碳潜力为13.86PgC;其中,亚热带森林是我国森林碳容量和固碳潜力最大的生态区.由此可见,充分发挥我国现有森林的碳吸存能力,减少对现有森林碳库的干扰,是继造林再造林之外的陆地生态系统增汇的又一可以选择的重要技术途径.

References

[1]  16 Turner D P, Koerper G J, Harmon M E, et al. Carbon sequestration by forests of the United States. Current status and projections to the year 2040. Tellus B, 1995, 47: 232-239
[2]  27 Jarvis P G, Morison J I L, Chaloner W G, et al. Atmospheric carbon dioxide and forests [and discussion]. Phil Trans R Soc Lond B, 1989, 324: 369-392
[3]  28 Keith H, Mackey B G, Lindenmayer D B. Re-evaluation of forest biomass carbon stocks and lessons from the world''s most carbon-dense forests. Proc Natl Acad Sci USA, 2009, 106: 11635-11640
[4]  29 罗云建, 王效科, 张小全, 等. 华北落叶松人工林的生物量估算参数. 林业科学, 2010, 46: 6-11
[5]  30 罗天祥. 中国主要森林类型生物生产力格局及其数学模型. 博士学位论文. 北京: 中国科学院自然资源综合考察委员会, 1996
[6]  31 国家林业局. 全国森林资源统计(1999~2003). 北京: 中国林业出版社, 2005
[7]  32 方精云, 刘国华, 徐篙龄. 我国森林植被的生物量和净生产量. 生态学报, 1996, 16: 497-508
[8]  33 Pan Y D, Luo T X, Birdsey R, et al. New estimates of carbon storage and sequestration in China''s forests: effects of age-class and method on inventory-based carbon estimation. Clim Change, 2004, 67: 211-236
[9]  34 于贵瑞, 何洪林, 刘新安, 等. 中国陆地生态信息空间化技术研究(I): 气象/气候信息的空间化技术途径. 自然资源学报, 2004, 19: 537-544
[10]  2 Liu Y C, Yu G R, Wang Q F, et al. Huge carbon sequestration potential in global forests. J Resour Ecol, 2012, 3: 193-201
[11]  3 IPCC. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. Vol. 4 Agriculture, Forestry and Other Land Use, Prepared by the National Greenhouse Gas Inventories Programm. Geneva: Intergovernmental Panel on Climate Change, 2006
[12]  4 Yu G R, Li X R, Wang Q F, et al. Carbon storage and its spatial pattern of terrestrial ecosystem in China. J Resour Ecol, 2010, 1: 97-109
[13]  5 全国造林绿化规划纲要(2011-2020年). 北京: 全国绿化委员会和国家林业局, 2011
[14]  6 第八次全国森林资源清查. 北京: 国家林业局, 2013
[15]  7 刘迎春. 基于生态调查数据整合分析的全球森林生态系统碳容量及其固碳潜力研究. 博士学位论文. 北京: 中国科学院地理科学与资源研究所, 2013
[16]  8 王效科, 冯宗炜. 中国森林生态系统中植物固定大气碳的潜力. 生态学杂志, 2000, 19: 72-74
[17]  9 王春梅, 邵彬, 王汝南. 东北地区两种主要造林树种生态系统固碳潜力. 生态学报, 2010, 30: 1764-1772
[18]  10 刘迎春, 王秋凤, 于贵瑞, 等. 黄土丘陵区两种主要退耕还林树种生态系统碳储量和固碳潜力. 生态学报, 2011, 31: 4277-4286
[19]  11 Lieth H. Primary production: terrestrial ecosystems. Hum Ecol, 1973, 1: 303-332
[20]  12 Ju W M, Chen J M, Harvey D, et al. Future carbon balance of China''s forests under climate change and increasing CO2. J Environ Manage, 2007, 85: 538-562
[21]  13 Schmid S, Thürig E, Kaufmann E, et al. Effect of forest management on future carbon pools and fluxes: a model comparison. For Ecol Manage, 2006, 237: 65-82
[22]  14 吴庆标, 王效科, 段晓男, 等. 中国森林生态系统植被固碳现状和潜力. 生态学报, 2008, 28: 517-524
[23]  15 Eggers J, Lindner M, Zudin S, et al. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Glob Change Biol, 2008, 14: 2288-2303
[24]  17 Thomas S, Malczewski G, Saprunoff M. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. J Environ Manage, 2007, 85: 663-671
[25]  18 Woodbury P B, Smith J E, Heath L S. Carbon sequestration in the US forest sector from 1990 to 2010. Forest Ecol Manage, 2007, 241: 14-27
[26]  19 Tan Z H, Zhang Y P, Schaefer D, et al. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos Environ, 2011, 45: 1548-1554
[27]  20 Yan J H, Zhang Y P, Yu G R, et al. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in Southern China. Agric For Meteorol, 2013, 182: 257-265
[28]  21 Lewis S L, Lopez-Gonzalez G, Sonké B, et al. Increasing carbon storage in intact African tropical forests. Nature, 2009, 457: 1003-1006
[29]  22 Muller-Landau H C. Carbon cycle: sink in the African jungle. Nature, 2009, 457: 969-970
[30]  23 IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Vol. 3 Reference Manual, Chapter 5 Land-Use Change & Forestry. Geneva: Intergovernmental Panel on Climate Change, 1997
[31]  24 Clements F E. Plant succession: an analysis of the development of vegetation. Washington: Carnegie Institution of Washington, 1916
[32]  25 Odum E P. The strategy of ecosystem development. Science, 1969, 164: 262-270
[33]  26 Liu Y C, Yu G R, Wang Q F, et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Global Ecol Biogeogr, 2014, 23: 323-333
[34]  35 刘新安, 于贵瑞, 范辽生, 等. 中国陆地生态信息空间化技术研究(III): 温度、降水等气候要素. 自然资源学报, 2004, 19: 818-825
[35]  36 中国科学院中国植被图编辑委员会. 1:1000000中国植被图集. 北京: 科学出版社, 2001
[36]  37 中国科学院中国植被图编辑委员会. 中国植被及其地理格局—中华人民共和国植被图(1:1000000)说明书. 北京: 地质出版社, 2007
[37]  38 New M, Lister D, Hulme M, et al. A high-resolution data set of surface climate over global land areas. Climate Res, 2002, 21: 1-25
[38]  39 Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25: 1965-1978
[39]  40 Global Ecological Zoning for the Global Forest Resources Assessment 2000. Rome: Food and Agriculture Organization of the United Nations, 2001
[40]  41 黄秉维. 中国综合自然区划草案. 科学通报, 1959, 4: 594-602
[41]  42 Stegen J C, Swenson N G, Enquist B J, et al. Variation in above-ground forest biomass across broad climatic gradients. Global Ecol Biogeogr, 2011, 20: 744-754
[42]  43 Randin C F, Paulsen J, Vitasse Y, et al. Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Global Ecol Biogeogr, 2013, 22: 913-923
[43]  44 杨勤业, 郑度, 刘燕华. 横断山地区干旱河谷的自然特点及其开发利用. 干旱区资源与环境, 1988, 2: 17-23
[44]  45 何永彬, 卢培泽, 朱彤. 横断山-云南高原干热河谷形成原因研究. 资源科学, 2000, 22: 69-72
[45]  46 郭兆迪, 胡会峰, 李品, 等. 1977~2008年中国森林生物量碳汇的时空变化. 中国科学: 生命科学, 2013, 43: 421-431
[46]  1 Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world''s forests. Science, 2011, 333: 988-993
[47]  47 肖兴威. 中国森林资源清查. 北京: 中国林业出版社, 2005
[48]  48 Peng C H, Ma Z H, Lei X D, et al. A drought-induced pervasive increase in tree mortality across Canada''s boreal forests. Nat Clim Change, 2011, 1: 467-471
[49]  50 周涛, 史培军, 贾根锁, 等. 中国森林生态系统碳周转时间的空间格局. 中国科学: 地球科学, 2010, 40: 632-644
[50]  49 Ma Z H, Peng C H, Zhu Q A, et al. Regional drought-induced reduction in the biomass carbon sink of Canada''s boreal forests. Proc Natl Acad Sci USA, 2012, 109: 2423-2427

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133