1 Wiemann B, Starnes C O. Coley''s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther, 1994, 64: 529-564
[2]
2 Pawelek J. Agents and methods for treatment of disease by oligosaccharide targeting agents. US Patent: 20050026866 A1, 2003, July7
[3]
3 Baban C K, Cronin M, O''Hanlon D, et al. Bacteria as vectors for gene therapy of cancer. Bioeng Bugs, 2010, 1: 385-394
[4]
4 Nuyts S, Van Mellaert L, Theys J, et al. Clostridium spores for tumor-specific drug delivery. Anticancer Drugs, 2002, 13: 115-125
[5]
5 Chakrabarty A M. Microorganisms and cancer: quest for a therapy. J Bacteriol, 2003, 185: 2683-2686
[6]
6 Dang L H, Bettegowda C, Huso D L, et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acd Sci USA, 2001, 98: 15155-15160
[7]
7 Nauts H C, Fowler G A, Bogatko F H. A review of the influence of bacterial infection and of bacterial products (Coley''s toxins) on malignant tumors in man. Acta Med Scand Suppl, 1953, 276: 1-103
[8]
8 Patyar S, Joshi R, Byrav D S, et al. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci, 2010, 17: 21
[9]
9 Wong K W, Isberg R R. Emerging views on integrin signaling via Rac1 during invasin-promoted bacterial uptake. Curr Opin Microbiol, 2005, 8: 4-9
[10]
10 Anderson J C, Clarke E J, Arkin A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol, 2006, 355: 619-627
[11]
11 Schnupf P, Portnoy D A. Listeriolysin O: a phagosome-specific lysin. Microbes Infect, 2007, 9: 1176-1187
[12]
12 Xiang S L, Fruehauf J, Li C J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechol, 2006, 24: 697-70
[13]
13 Liao M J, Dong A H, Wang Z D, et al. Plant transposon and the application in functional genomics. Hereditas, 2000, 22: 345-348
[14]
14 Kopp M, Irschik H, Gross F, et al. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol, 2004, 107: 29-40
[15]
15 Le Breton Y, Mohapatra N P, Haldenwang W G. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol, 2006, 72: 327-333
[16]
16 Fu J, Wenzel S C, Perlova O, et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res, 2008, 36: 113-113
[17]
17 Youderian P, Burke N, White D J, et al. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol, 2003, 49: 555-570
[18]
18 Gronbach K, Eberle U, Müller M, et al. Safety of probiotic Escherichia coli strain Nissle1917 depends on intestinal microbiota and adaptive immunity of the host. Infect Immun, 2010, 78: 3036-3046
[19]
19 Adam E, Delbrassinne L, Bouillot C, et al. Probiotic Escherichia coli Nissle1917 activates DC and prevents house dust mite allergy through a TLR4-dependent pathway. Eur J Immunol, 2010, 40: 1995-2005
21 Zhou S, Zhang M, Wang J. Tumor-targeted delivery of TAT-Apoptin fusion gene using Escherichia coli Nissle1917 to colorectal cancer. Med Hypotheses, 2011, 76: 533-534
[22]
22 Zhang Y L, Zhang Y M, Xia L Q, et al. Escherichia coli Nissle1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol, 2012, 78: 7603-7610
[23]
23 Apiyo D, Wittung-Stafshede P. Unique complex between bacterial azurin and tumor-suppressor protein p53. Biochem Biophys Res Commun, 2005, 332: 965-968
[24]
24 Ye Z M, Miao X D, Yang D S, et al. Selective inducement effect of bacterial redox protein azurin on apoptosis of human osteosarcoma cell line U2OS. Ai Zheng, 2005, 24: 298-304
26 Basu J, Stromberg G, Compitello G, et al. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res, 2005, 33: 587-596
[27]
27 Critchley R J, Jezzard S, Radford K J, et al. Potential therapeutic applications of recombinant, invasive E. coli. Gene Ther, 2004, 11: 1224-1233
[28]
28 Fajac I, Grosse S, Collombet J M, et al. Recombinant Escherichia coli as a gene delivery vector into airway epithelial cells. J Control Release, 2004, 97: 371-381