全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用转座子构建靶向侵袭性抗肿瘤工程菌

DOI: 10.1360/N052014-00101, PP. 200-209

Keywords: 大肠杆菌,转座子,细菌载体,抗肿瘤

Full-Text   Cite this paper   Add to My Lib

Abstract:

转座子是一类在基因组上可以自由跳跃的移动序列,同时也是对微生物进行基因修饰和插入突变的有效工具,但尚未见有利用转座子导入革兰氏阴性菌E.coliNissle1917菌株的报道.本研究通过构建pR6K转座载体,对肠道益生菌E.coliNissle1917菌株进行了转座插入诱变,将假结核耶尔森菌的侵袭素基因inv和单核细胞增多性李斯特菌的溶血素基因hly随机整合至E.coliNissle1917菌株的染色体上,从而使非致病性大肠杆菌E.coliNissle1917获得侵袭哺乳动物细胞的能力.通过细胞体外侵袭实验发现,本研究所构建的工程菌对B16,HCT-116等肿瘤细胞有较好的侵袭活性,同时与抗肿瘤蛋白Azurin一起作用B16细胞,抗肿瘤效果显著增强,为进一步运用以大肠杆菌E.coliNissle1917作为DNA疫苗或者基因治疗的载体开辟了新的技术途径.

References

[1]  1 Wiemann B, Starnes C O. Coley''s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther, 1994, 64: 529-564
[2]  2 Pawelek J. Agents and methods for treatment of disease by oligosaccharide targeting agents. US Patent: 20050026866 A1, 2003, July7
[3]  3 Baban C K, Cronin M, O''Hanlon D, et al. Bacteria as vectors for gene therapy of cancer. Bioeng Bugs, 2010, 1: 385-394
[4]  4 Nuyts S, Van Mellaert L, Theys J, et al. Clostridium spores for tumor-specific drug delivery. Anticancer Drugs, 2002, 13: 115-125
[5]  5 Chakrabarty A M. Microorganisms and cancer: quest for a therapy. J Bacteriol, 2003, 185: 2683-2686
[6]  6 Dang L H, Bettegowda C, Huso D L, et al. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acd Sci USA, 2001, 98: 15155-15160
[7]  7 Nauts H C, Fowler G A, Bogatko F H. A review of the influence of bacterial infection and of bacterial products (Coley''s toxins) on malignant tumors in man. Acta Med Scand Suppl, 1953, 276: 1-103
[8]  8 Patyar S, Joshi R, Byrav D S, et al. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci, 2010, 17: 21
[9]  9 Wong K W, Isberg R R. Emerging views on integrin signaling via Rac1 during invasin-promoted bacterial uptake. Curr Opin Microbiol, 2005, 8: 4-9
[10]  10 Anderson J C, Clarke E J, Arkin A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol, 2006, 355: 619-627
[11]  11 Schnupf P, Portnoy D A. Listeriolysin O: a phagosome-specific lysin. Microbes Infect, 2007, 9: 1176-1187
[12]  12 Xiang S L, Fruehauf J, Li C J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechol, 2006, 24: 697-70
[13]  13 Liao M J, Dong A H, Wang Z D, et al. Plant transposon and the application in functional genomics. Hereditas, 2000, 22: 345-348
[14]  14 Kopp M, Irschik H, Gross F, et al. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol, 2004, 107: 29-40
[15]  15 Le Breton Y, Mohapatra N P, Haldenwang W G. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol, 2006, 72: 327-333
[16]  16 Fu J, Wenzel S C, Perlova O, et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res, 2008, 36: 113-113
[17]  17 Youderian P, Burke N, White D J, et al. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol, 2003, 49: 555-570
[18]  18 Gronbach K, Eberle U, Müller M, et al. Safety of probiotic Escherichia coli strain Nissle1917 depends on intestinal microbiota and adaptive immunity of the host. Infect Immun, 2010, 78: 3036-3046
[19]  19 Adam E, Delbrassinne L, Bouillot C, et al. Probiotic Escherichia coli Nissle1917 activates DC and prevents house dust mite allergy through a TLR4-dependent pathway. Eur J Immunol, 2010, 40: 1995-2005
[20]  20 王建生, 张明鑫. 益生菌在消化系肿瘤治疗中的潜在应用价值. 世界华人消化杂志, 2009, 17: 539-543
[21]  21 Zhou S, Zhang M, Wang J. Tumor-targeted delivery of TAT-Apoptin fusion gene using Escherichia coli Nissle1917 to colorectal cancer. Med Hypotheses, 2011, 76: 533-534
[22]  22 Zhang Y L, Zhang Y M, Xia L Q, et al. Escherichia coli Nissle1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol, 2012, 78: 7603-7610
[23]  23 Apiyo D, Wittung-Stafshede P. Unique complex between bacterial azurin and tumor-suppressor protein p53. Biochem Biophys Res Commun, 2005, 332: 965-968
[24]  24 Ye Z M, Miao X D, Yang D S, et al. Selective inducement effect of bacterial redox protein azurin on apoptosis of human osteosarcoma cell line U2OS. Ai Zheng, 2005, 24: 298-304
[25]  25 强火亮, 陈代杰, 戈梅, 等. 细菌作为抗肿瘤剂的研究进展. 生命科学, 2008, 20: 633-637
[26]  26 Basu J, Stromberg G, Compitello G, et al. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res, 2005, 33: 587-596
[27]  27 Critchley R J, Jezzard S, Radford K J, et al. Potential therapeutic applications of recombinant, invasive E. coli. Gene Ther, 2004, 11: 1224-1233
[28]  28 Fajac I, Grosse S, Collombet J M, et al. Recombinant Escherichia coli as a gene delivery vector into airway epithelial cells. J Control Release, 2004, 97: 371-381

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133