3 Grus W E, Zhang J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol, 2008, 25: 1593-1601
[2]
4 Zhang J, Webb D M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci USA, 2003, 100: 8337-8341
[3]
5 Zhao H, Xu D, Zhang S, et al. Widespread losses of vomeronasal signal transduction in bats. Mol Biol Evol, 2011, 28: 7-12
[4]
6 Perrin W F, Würsig B, Thewissen J G M. Encyclopedia of Marine Mammals. New York: Academic Press, 2009
[5]
7 Lowell W R, Flanigan W F. Marine mammal chemoreception. Mammal Rev, 1980, 10: 53-59
[6]
8 Yu L, Jin W, Wang J X, et al. Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol, 2010, 27: 1467-1477
[7]
9 Grus W E, Zhang J. Origin and evolution of the vertebrate vomeronasal system viewed through system-specific genes. Bioessays, 2006, 28: 709-718
[8]
10 Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
[9]
11 Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739
[10]
12 Mackay-Sim A, Duvall D, Graves B M. The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol, 1985, 27: 186-194
[11]
13 Switzer R C, Johnson J J, Kirsch J A W. Phylogeny through brain traits: relation of lateral olfactory tract fibers to the accessory olfactory formation as a palimpsest of mammalian descent. Brain Behav Evol, 1980, 17: 339-363
[12]
14 Meisami E, Bhatnagar K P. Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech, 1998, 43: 476-499
[13]
15 Zhao H, Rossiter S J, Teeling E C, et al. The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA, 2009, 106: 8980-8985
[14]
16 Zhao H, Zhou Y, Pinto C M, et al. Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol Biol Evol, 2010, 27: 2642-2650
[15]
17 Neuweiler G. The Biology of Bats. Oxford (UK): University Press, 2000
[16]
18 Eisthen H L, Wyatt T D. The vomeronasal system and pheromones. Curr Biol, 2006, 16: R73-R74
[17]
19 Kishida T, Kubota S, Shirayama Y, et al. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett, 2007, 3: 428-430
[18]
20 Jiang P, Josue J, Li X, et al. Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA, 2012, 109: 4956-4961
[19]
21 Sato J J, Wolsan M. Loss or major reduction of umami taste sensation in pinnipeds. Naturwissenschaften, 2012, 99: 655-659
[20]
22 Feng P, Zheng J, Rossiter S J, et al. Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol, 2014, 6: 1254-1265
[21]
23 Hayden S, Bekaert M, Crider T A, et al. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res, 2010, 20: 1-9
[22]
24 Cline D R, Siniff D B, Erickson A W. Underwater copulation of the Weddell seal. J Mammal, 1971, 52: 216-218
[23]
25 Cassini M H. A model on female breeding dispersion and the reproductive systems of pinnipeds. Behav Processes, 1999, 51: 93-99
[24]
26 Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res, 2007, 17: 166-174
[25]
27 Emes R D, Beatson S A, Ponting C P, et al. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res, 2004, 14: 591-602
[26]
1 Wysocki C J, Meredith M. The Vomeronasal System. New York: John Wiley, 1987
[27]
2 Buck L B. The molecular architecture of odor and pheromone sensing in mammals. Cell, 2000, 100: 611-618