全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海洋哺乳动物信息素嗅觉的分子进化

DOI: 10.1360/N052014-00299, PP. 175-182

Keywords: 犁鼻器系统,Trpc2,海洋哺乳动物,信息素,假基因,交配,进化

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究感觉基因的进化规律是动物进化领域长期探索的重要问题.哺乳动物通常具有2套嗅觉系统:主要嗅觉系统(MOS)和犁鼻器系统(VNS).其中,VNS主要感知动物个体释放的信息素分子,而信息素在动物的生殖和社会行为中起重要调节作用.为了研究动物信息素嗅觉进化的背后推动力,对海洋哺乳动物的代表物种进行了Trpc2基因(VNS功能的分子标记)的序列测定和进化分析.以前的研究表明,Trpc2基因仅在VNS中表达,其序列完整/缺失与VNS的功能完整/退化完全一致.本研究结果显示,鲸类和海牛类的Trpc2为假基因,鳍脚类的1个分支类群(海豹类)和水獭类的Trpc2也是假基因,提示VNS功能丢失,即信息素嗅觉功能退化;而北极熊和鳍脚类的另一个分支类群(海狮类)保留了1个完整的Trpc2,并且这个基因仍受强烈的净化选择和功能限制,提示信息素嗅觉功能仍然保留.进一步分析表明,信息素嗅觉退化的海兽主要在水中交配,而信息素嗅觉保留的海兽主要在陆地上交配.本研究提出了一个新的科学假说:交配场所的选择可能推动了海洋哺乳动物信息素嗅觉的进化.

References

[1]  3 Grus W E, Zhang J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol, 2008, 25: 1593-1601
[2]  4 Zhang J, Webb D M. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci USA, 2003, 100: 8337-8341
[3]  5 Zhao H, Xu D, Zhang S, et al. Widespread losses of vomeronasal signal transduction in bats. Mol Biol Evol, 2011, 28: 7-12
[4]  6 Perrin W F, Würsig B, Thewissen J G M. Encyclopedia of Marine Mammals. New York: Academic Press, 2009
[5]  7 Lowell W R, Flanigan W F. Marine mammal chemoreception. Mammal Rev, 1980, 10: 53-59
[6]  8 Yu L, Jin W, Wang J X, et al. Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol, 2010, 27: 1467-1477
[7]  9 Grus W E, Zhang J. Origin and evolution of the vertebrate vomeronasal system viewed through system-specific genes. Bioessays, 2006, 28: 709-718
[8]  10 Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
[9]  11 Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731-2739
[10]  12 Mackay-Sim A, Duvall D, Graves B M. The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol, 1985, 27: 186-194
[11]  13 Switzer R C, Johnson J J, Kirsch J A W. Phylogeny through brain traits: relation of lateral olfactory tract fibers to the accessory olfactory formation as a palimpsest of mammalian descent. Brain Behav Evol, 1980, 17: 339-363
[12]  14 Meisami E, Bhatnagar K P. Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech, 1998, 43: 476-499
[13]  15 Zhao H, Rossiter S J, Teeling E C, et al. The evolution of color vision in nocturnal mammals. Proc Natl Acad Sci USA, 2009, 106: 8980-8985
[14]  16 Zhao H, Zhou Y, Pinto C M, et al. Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol Biol Evol, 2010, 27: 2642-2650
[15]  17 Neuweiler G. The Biology of Bats. Oxford (UK): University Press, 2000
[16]  18 Eisthen H L, Wyatt T D. The vomeronasal system and pheromones. Curr Biol, 2006, 16: R73-R74
[17]  19 Kishida T, Kubota S, Shirayama Y, et al. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett, 2007, 3: 428-430
[18]  20 Jiang P, Josue J, Li X, et al. Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA, 2012, 109: 4956-4961
[19]  21 Sato J J, Wolsan M. Loss or major reduction of umami taste sensation in pinnipeds. Naturwissenschaften, 2012, 99: 655-659
[20]  22 Feng P, Zheng J, Rossiter S J, et al. Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol, 2014, 6: 1254-1265
[21]  23 Hayden S, Bekaert M, Crider T A, et al. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res, 2010, 20: 1-9
[22]  24 Cline D R, Siniff D B, Erickson A W. Underwater copulation of the Weddell seal. J Mammal, 1971, 52: 216-218
[23]  25 Cassini M H. A model on female breeding dispersion and the reproductive systems of pinnipeds. Behav Processes, 1999, 51: 93-99
[24]  26 Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res, 2007, 17: 166-174
[25]  27 Emes R D, Beatson S A, Ponting C P, et al. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res, 2004, 14: 591-602
[26]  1 Wysocki C J, Meredith M. The Vomeronasal System. New York: John Wiley, 1987
[27]  2 Buck L B. The molecular architecture of odor and pheromone sensing in mammals. Cell, 2000, 100: 611-618

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133