全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高等植物阿拉伯半乳糖蛋白的功能研究

DOI: 10.1360/N052014-00295, PP. 113-123

Keywords: 阿拉伯半乳糖蛋白,高等植物,生物学功能

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿拉伯半乳糖蛋白(AGPs)是广泛分布于植物体内的一类富含羟脯氨酸糖蛋白的总称,前人研究结果表明,该类蛋白参与了高等植物生长发育的诸多生物学过程.本文对高等植物AGPs基因家族的分类、AGPs糖基化的氨基酸密码和AGPs鉴定的方法进行了系统的阐述,并对在生殖发育、营养器官发生、植物与环境间的互作等方面AGPs基因的功能研究现状进行了概述,对AGPs研究的前景进行了探讨,希望为今后的相关研究带来启迪.

References

[1]  15 Kieliszewski M J, Lamport D T. Extensin: repetitive motifs, functional sites, post-translational codes and phylogeny. Plant J, 1994, 5: 157-172
[2]  16 Shpak E, Leykam J F, Kieliszewski M J. Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proc Natl Acad Sci USA, 1999, 96: 14736-14741
[3]  17 Shpak E, Barbar E, Leykam J F, et al. Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. J Biol Chem, 2001, 276: 11272-11278
[4]  18 Zhao Z D, Tan L, Showalter A M, et al. Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis. Plant J, 2002, 31: 431-444
[5]  19 Shi H, Kim Y, Guo Y, et al. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 2003, 15: 19-32
[6]  20 van Hengel A J, Roberts K. AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J, 2003, 36: 256-270
[7]  21 Shimizu M, Igasaki T, Yamada M, et al. Experimental determination of proline hydroxylation and hydroxyproline arabinogalactosylation motifs in secretory proteins. Plant J, 2005, 42: 877-889
[8]  22 Borner G H, Sherrier D J, Stevens T J, et al. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol, 2002, 129: 486-499
[9]  23 Mashiguchi K, Yamaguchi I, Suzuki Y. Isolation and identification of glycosylphosphatidylinositol-anchored arabinogalactan proteins and novel b-glucosyl Yariv-reactive proteins from seeds of rice (Oryza sativa). Plant Cell Physiol, 2004, 45: 1817-1829
[10]  24 Schultz C J, Rumsewicz M P, Johnson K L, et al. Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol, 2002, 129: 1448-1463
[11]  25 Showalter A M, Keppler B, Lichtenberg J, et al. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol, 2010, 153: 485-513
[12]  26 Huang G Q, Xu W L, Gong S Y, et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and inresponse to phytohormones and salt stress. Physiol Plant, 2008, 134: 348-359
[13]  27 Faik A, Abouzouhair J, Sarhan F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol Genet Genomics, 2006, 276: 478-494
[14]  28 Wu Y, Xu W, Huang G, et al. Expression and localization of GhH6L, a putative classical arabinogalactan protein in cotton (Gossypium hirsutum). Acta Biochim Biophys Sin, 2009, 41: 495-503
[15]  29 Gong S Y, Huang G Q, Sun X, et al. GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol, 2012, 14: 447-457
[16]  30 Poon S, Heath R L, Clarke A E. A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol, 2012, 160: 684-695
[17]  31 Aizat W M, Preuss J M, Johnson A A, et al. Investigation of a His-rich arabinogalactan-protein for micronutrient biofortification of cereal grain. Physiol Plant, 2011, 143: 271-286
[18]  32 Youl J J, Bacic A, Oxley D. Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proc Natl Acad Sci USA, 1998, 95: 7921-7926
[19]  33 Mau S L, Chen C G, Pu Z Y, et al. Molecular cloning of cDNAs encoding the protein backbones of arabinogalactan-proteins from the filtrate of suspension-cultured cells of Pyrus communis and Nicotiana alata. Plant J, 1995, 8: 269-281
[20]  34 Du H, Simpson R J, Clarke A E, et al. Molecular characterization of a stigma-specific gene encoding an arabinogalactan-protein (AGP) from Nicotiana alata. Plant J, 1996, 9: 313-323
[21]  35 Schultz C J, Hauser K, Lind J L, et al. Molecular characterisation of a cDNA sequence encoding the backbone of a style-specific 120 kD glycoprotein which has features of both extensins and arabinogalactan proteins. Plant Mol Biol, 1997, 35: 833-845
[22]  36 Bosch M, Knudsen J S, Derksen J, et al. Class III pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins. Plant Physiol, 2001, 125: 2180-2188
[23]  37 Cheung A Y, May B, Kawata E E, et al. Characterization of cDNAs for stylar transmitting tissue-specific proline-rich proteins in tobacco. Plant J, 1993, 3: 151-160
[24]  38 Kieliszewski M J, Kamyab A, Leykam J F, et al. A histidine-rich extensin from Zea mays is an arabinogalactan protein. Plant Physiol, 1992, 99: 538-547
[25]  39 Levitin B, Richter D, Markovich I, et al. Arabinogalactan proteins 6 and 11 are required for stamen and pollen function in Arabidopsis. Plant J, 2008, 56: 351-363
[26]  40 Coimbra S, Costa M, Jones B, et al. Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot, 2009, 60: 3133-3142
[27]  41 Coimbra S, Costa M, Mendes M A, et al. Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. Sex Plant Reprod, 2010, 23: 199-205
[28]  42 Nam J, Mysore K S, Zheng C, et al. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by agrobacterium. Mol Gen Genet, 1999, 261: 429-438
[29]  43 Gaspar Y, Nam J, Schultz C J, et al. Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol, 2004, 135: 2162-2171
[30]  44 Acosta-Garcia G, Vielle-Calzada J P. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell, 2004, 16: 2614-2628
[31]  45 Zhang Y, Yang J, Showalter A M. AtAGP18 is localized at the plasma membrane and functions in plant growth and development. Planta, 2011, 233: 675-683
[32]  46 Demesa-Arevalo E, Vielle-Calzada J P. The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. Plant Cell, 2013, 25: 1274-1287
[33]  47 Yang J, Sardar H S, McGovern K R, et al. A lysine-rich arabinogalactan protein in Arabidopsis is essential for plant growth and development, including cell division and expansion. Plant J, 2007, 49: 629-640
[34]  48 Butenko M A, Patterson S E, Grini P E, et al. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell, 2003, 15: 2296-2307
[35]  49 Stenvik G E, Butenko M A, Urbanowicz B R, et al. Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell, 2006, 18: 1467-1476
[36]  50 Liu C, Mehdy M C. A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Plant Physiol, 2007, 145: 863-874
[37]  51 Hijazi M, Durand J, Pichereaux C, et al. Characterization of the arabinogalactan protein 31 (AGP31) of Arabidopsis thaliana: new advances on the Hyp-O-glycosylation of the Pro-rich domain. J Biol Chem, 2012, 287: 9623-9632
[38]  52 Hijazi M, Roujol D, Nguyen-Kim H, et al. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? Ann Bot, 2014, 114: 1087-1097
[39]  53 Tan L, Eberhard S, Pattathil S, et al. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell, 2013, 25: 270-287
[40]  54 Johnson K L, Kibble N A, Bacic A, et al. A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS One, 2011, 6: e25154
[41]  55 Li J, Yu M, Geng L L, et al. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J, 2010, 64: 482-497
[42]  56 Brown D M, Zeef L A, Ellis J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell, 2005, 17: 2281-2295
[43]  57 Ito S, Suzuki Y, Miyamoto K, et al. AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in sclerenchyma cells. Biosci Biotechnol Biochem, 2005, 69: 1963-1969
[44]  58 Persson S, Wei H, Milne J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA, 2005, 102: 8633-8638
[45]  59 MacMillan C P, Mansfield S D, Stachurski Z H, et al. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J, 2010, 62: 689-703
[46]  60 Motose H, Sugiyama M, Fukuda H. An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of Zinnia mesophyll cells. Plant Cell Physiol, 2001, 42: 129-137
[47]  61 Cheung A Y, Wang H, Wu H M. A floral transmitting tissue-specific glyxoprotein attracts pollen tubes and stimulates their growth. Cell, 1995, 82: 383-393
[48]  62 Wu H M, Wang H, Cheung A Y. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell, 1995, 82: 395-403
[49]  63 Hancock C N, Kent L, McClure B A. The stylar 120 kD glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J, 2005, 43: 716-723
[50]  64 Lee C B, Swatek K N, McClure B. Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins. J Biol Chem, 2008, 283: 26965-26973
[51]  65 Li Y, Liu D, Tu L, et al. Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep, 2010, 29: 193-202
[52]  66 Huang G Q, Gong S Y, Xu W L, et al. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol, 2013, 161: 1278-1290
[53]  67 Park M H, Suzuki Y, Chono M, et al. CsAGP1, a gibberellin responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan protein and is involved in stem elongation. Plant Physiol, 2003, 131: 1450-1459
[54]  68 Sun W, Kieliszewski M J, Showalter A M. Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. Plant J, 2004, 40: 870-881
[55]  69 Albert M, Belastegui-Macadam X, Kaldenhoff R. An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. Plant J, 2006, 48: 548-556
[56]  70 Lin S, Dong H, Zhang F, et al. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot, 2014, 113: 777-788
[57]  71 Hu Y, Qin Y, Zhao J. Localization of arabinogalactan protein epitope and the effects of Yariv phenylglycoside during zygotic embryo development of Arabidopsis thaliana. Protoplasma, 2006, 229: 21-31
[58]  72 Qin Y, Zhao J. Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of b-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J Exp Bot, 2006, 57: 2061-2074
[59]  73 Qin Y, Chen D, Zhao J. Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L. Protoplasma, 2007, 231: 43-53
[60]  74 Qin Y, Zhao J. Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L. Sex Plant Reprod, 2007, 20: 213-224
[61]  75 Zhong J, Ren Y, Yu M, et al. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis. Protoplasma, 2011, 248: 551-563
[62]  76 Yu M, Zhao J. The cytological changes of tobacco zygote and proembryo cells induced by b-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. BMC Plant Biol, 2012, 12: 126
[63]  77 Hu T X, Yu M, Zhao J. Comparative transcriptional profiling analysis of the two daughter cells from tobacco zygote reveals the transcriptome differences in the apical and basal cells. BMC Plant Biol, 2010, 10: 167
[64]  78 Pereira L G, Costa M, Coimbra S. Localization of arabinogalactan protein 6 fused with Sirius ultramarine fluorescent protein in Arabidopsis pollen and pollen tubes. Plant Signal Behav, 2013, 8: e25998
[65]  79 Pereira A M, Masiero S, Nobre M S, et al. Differential expression patterns of arabinogalactan proteins in Arabidopsis thaliana reproductive tissues. J Exp Bot, 2014, 65: 5459-5471
[66]  80 Seifert G J, Xue H, Acet T. The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann Bot, 2014, 114: 125-133
[67]  1 Seifert G J, Roberts K. The biology of arabinogalactan proteins. Annu Rev Plant Biol, 2007, 58: 137-161
[68]  2 Ellis M, Egelund J, Schultz C J, et al. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol, 2010, 153: 403-419
[69]  3 Gaspar Y, Johnson K L, McKenna J A, et al. The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol, 2001, 47: 161-176
[70]  4 Schultz C J, Johnson K L, Currie G, et al. The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell, 2000, 12: 1751-1768
[71]  5 Du H, Clarke A E, Bacic A. Arabinogalactan-proteins: a class of extracellular matrix proteoglycans involved in plant growth and development. Trends Cell Biol, 1996, 6: 411-414
[72]  6 Li S X, Showalter A M. Cloning and developmental stress-regulated expression of a gene encoding a tomato arabinogalactan-proteins. Plant Mol Biol, 1996, 32: 641-652
[73]  7 Gilson P, Gaspar Y M, Oxley D, et al. NaAGP4 is an arabinogalactan protein whose expression is suppressed by wounding and fungal infection in Nicotiana alata. Protoplasma, 2001, 215: 128-139
[74]  8 Sun W, Xu J, Yang J, et al. The lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization. Plant Cell Physiol, 2005, 46: 975-984
[75]  9 Johnson K L, Jones B J, Bacic A, et al. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol, 2003, 133: 1911-1925
[76]  10 Ma H, Zhao J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot, 2010, 61: 2647-2668
[77]  11 Motose H, Sugiyama M, Fukuda H. A proteoglycan mediates inductive interaction during plant vascular development. Nature, 2004, 429: 873-878
[78]  12 Kobayashi Y, Motose H, Iwamoto K, et al. Expression and genome-wide analysis of the xylogen-type gene family. Plant Cell Physiol, 2011, 52: 1095-1106
[79]  13 Mashiguchi K, Asami T, Suzuki Y. Genome-wide identification, structure and expression studies, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci Biotechnol Biochem, 2009, 73: 2452-2459
[80]  14 Ma H, Zhao H, Liu Z, et al. The phytocyanin gene family in rice (Oryza sativa L.): genome-wide identification, classification and transcriptional analysis. PLoS One, 2011, 6: e25184

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133