全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

microRNA-215异常激活抑制Dicer1促进肝癌细胞迁移和转化

DOI: 10.1360/N052014-00302, PP. 165-174

Keywords: microRNA,Dicer1,肝癌,迁移和转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

microRNA异常表达促进癌症的发生发展.本研究通过microRNA表达谱分析2个肝癌细胞和2个正常细胞microRNA的表达,寻找与肝癌相关的microRNA,发现microRNA-215在肝癌细胞中高表达,qRT-PCR验证microRNA-215在肝癌细胞呈显著高表达.进一步研究发现,microRNA-215直接靶向Dicer1基因的3'UTR并抑制Dicer1蛋白表达,Dicer1是microRNA加工成熟过程中必需的蛋白.过表达microRNA-215抑制Dicer1从而促进肝癌细胞迁移和转化,而抑制microRNA-215表达起相反作用.Dicer1抑制后,许多抑癌microRNA表达被抑制,从而促进迁移和转化.相对于癌旁组织,Dicer1在肝癌组织呈明显低表达.本研究揭示,microRNA-215异常活化并抑制Dicer1表达与肝癌发展相关.

References

[1]  1 Forner A, Llovet J M, Bruix J. Hepatocellular carcinoma. Lancet, 2012, 379: 1245-1255
[2]  2 Thorgeirsson S S, Grisham J W. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 2002, 31: 339-346
[3]  3 Farazi P A, DePinho R A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006, 6: 674-687
[4]  4 He L, Hannon G J. MicroRNA: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5: 522-531
[5]  5 Bartel D P. MicroRNA: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297
[6]  6 Iorio M V, Croce C M. MicroRNA in cancer: small molecules with a huge impact. J Clin Oncol, 2009, 27: 5848-5856
[7]  7 Mendell J T, Olson E N. MicroRNA in stress signaling and human disease. Cell, 2012, 148: 1172-1187
[8]  8 Calin G A, Croce C M. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006, 6: 857-866
[9]  9 Esquela-Kerscher A, Slack F J. Oncomirs—microRNA with a role in cancer. Nat Rev Cancer, 2006, 6: 259-269
[10]  10 Hammond S M. MicroRNA as tumor suppressors. Nat Genet, 2007, 39: 582-583.
[11]  11 He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435: 828-833
[12]  12 Kota J, Chivukula R R, O''Donnell K A, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137: 1005-1017
[13]  13 Trang P , Wiggins J F, Daige C L, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther, 2011, 19: 1116-1122
[14]  14 Wong K Y, Yim R L, So C C, et al. Epigeneticin activation of the microRNA34B/C in multiple myeloma. Blood, 2011, 118: 5901-5904
[15]  15 Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet, 2002, 31: 141-149
[16]  16 Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev, 2012, 22: 50-55
[17]  17 Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8: 286-298
[18]  18 Jones P A, Baylin S B. The epigenomics of cancer. Cell, 2007, 128: 683-692
[19]  19 Lujambio A, Esteller M. CpG island hypermethylation of tumor suppressor microRNA in human cancer. Cell Cycle, 2007, 6: 1455-1459
[20]  21 Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 2006, 9: 435-443
[21]  22 Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNA in cancer. Oncogene, 2012, 31: 1609-1622
[22]  23 Han H, Sun D, Li WJ, et al. A c-Myc-microRNA functional feedback loop affects hepatocarcinogenesis. Hepatology, 2013, 57: 2378-2389
[23]  24 Li Y, Lu J, Cohen D, et al. Transformation, genomic instability and senescence mediated by platelet/megakaryocyte glycoprotein Iba. Oncogene, 2008, 27: 1599-1609
[24]  25 Martello G, Rosato A, Ferrari F, et al. A microRNA targeting dicer for metastasis control. Cell, 2010, 141: 1195-1207
[25]  26 Li Y, Rogulski K, Zhou Q S, et al. The negative c-Myc target onzin affects proliferation and apoptosis via its obligate interaction with phospholipids scramblase I. Mol Cell Biol, 2006, 26: 3401-3413
[26]  27 Li Y J, Xu F F, Lu J, et al. Widespread genomic instability mediated by a pathway involving glycoprotein Iba and aurora B kinase. J Biol Chem, 2010, 285: 13183-13192
[27]  28 Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144: 646-674
[28]  29 Au S L, Wong C C, Lee J M, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNA to promote liver cancer metastasis. Hepatology, 2012, 56: 622-631
[29]  30 Wang Y, Toh H C, Chow P, et al. MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FASEB J, 2012, 26: 3032-3041
[30]  31 Datta J, Kutay H, Nasser M W, et al. Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res, 2008, 68: 5049-5058
[31]  32 He Y, Cui Y, Wang W, et al. Hypomethylation of the hsa-microRNA-191 locus causes high expression of hsa-microRNA-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia, 2011, 13: 841-853
[32]  33 Lujambio A, Calin G A, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 2008, 105: 13556-13561
[33]  20 Calin G A, Cimmino A, Fabbri M, et al. MicroRNA-15a and microRNA-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA, 2008, 105: 5166-5171
[34]  34 Baer C, Claus R, Frenzel L P, et al. Extensive promoter hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res, 2012, 72: 3775-3785
[35]  35 Yuan J H, Yang F, Chen B F, et al. The histone deacetylase 4/SP1/microRNA -200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 2011, 54: 2025-2035
[36]  36 Lujambio A, Portela A, Liz J, et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene, 2010, 29: 6390-6401
[37]  37 Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 2007, 67: 1424-1429
[38]  38 Yamagishi M, Nakano K, Miyake A, et al. Polycomb-mediated loss of microRNA-31 activates NIK-dependent NF-kB pathway in adult T cell leukemia and other cancers. Cancer Cell, 2012, 21: 121-135
[39]  39 Jin Z, Selaru F M, Cheng Y, et al. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene, 2011, 30: 1577-1585
[40]  40 Kumar M S, Lu J, Mercer K L, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet, 2007, 39: 673-677
[41]  41 Xu X, Fan Z, Kang L, et al. Hepatitis B virus X protein represses microRNA-148a to enhance tumorigenesis. J Clin Invest, 2013, 123: 630-645
[42]  42 Xu C, Liu S, Fu H, et al. MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer, 2010, 46: 2828-2836
[43]  43 Heravi-Moussavi A, Anglesio M S, Cheng S W, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. New Engl J Med, 2012, 366: 234-242
[44]  44 Rio Frio T, Bahubeshi A, Kanellopoulou C, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA, 2011, 305: 68-77
[45]  45 Sekine S, Ogawa R, Ito R, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology, 2009, 136: 2304-2315
[46]  46 Ravi A, Gurtan A M, Kumar M S, et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell, 2012, 21: 848-855
[47]  47 Kumar M S, Pester R E, Chen C Y, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev, 2009, 23: 2700-2704

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133