全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ⅲ型干扰素最新研究进展

DOI: 10.1360/N052014-00298, PP. 142-155

Keywords: IFN-λ,信号通路,抗病毒,单核苷酸多态性

Full-Text   Cite this paper   Add to My Lib

Abstract:

IFN-λ是新发现的分类为Ⅲ型干扰素的细胞因子,由IFN-λ1,IFN-λ2和IFN-λ3组成,也称作IL29,IL28A和IL28B.IFN-λ通过与其受体复合物结合进行信号转导,该复合物由特异性的IFN-λR1以及与IL-10相关的细胞因子共有的受体IL-10R2组成.IFN-λ主要激活Jak-STAT通路诱导抗病毒、抗增殖、抗癌以及先天或适应性免疫反应.其晶体结构与IL-10细胞因子家族相似.诱导IFN-λ基因表达的通路尚未被研究透彻,在一定程度上同IFN-α类似,涉及TRIF,RIG-I或IRF7通路.IL28B的核苷酸多态性与丙型肝炎病毒(HCV)的自发性清除及HCV联合疗法的结果有关联,预示IFN-λ可以作为替代目前IFN-α治疗HCV感染的一个更有效的选择.本文提供了IFN-λ的一些研究进展,关于IFN-λ的很多机制目前仍是未知的.

References

[1]  1 Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol, 2003, 4: 63-68
[2]  2 Li M, Liu X, Zhou Y, et al. Interferon-ls: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol, 2009, 86: 23-32
[3]  3 Donnelly R P, Kotenko S V. Interferon-lambda: a new addition to an old family. J Interferon Cytokine Res, 2010, 30: 555-564
[4]  4 Kotenko S V, Gallagher G, Baurin V V, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol, 2003, 4: 69-77
[5]  5 de Weerd N A, Nguyen T. The interferons and their receptors—distribution and regulation. Immunol Cell Biol, 2012, 90: 483-491
[6]  6 Kotenko S V. IFN-λs. Curr Opin Immunol, 2011, 23: 583-590
[7]  7 Lind K, Richardson S J, Leete P, et al. Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. J Virol, 2013, 87: 7646-7654
[8]  8 O''Connor K S, Ahlenstiel G, Suppiah V, et al. IFNL3 mediates interaction between innate immune cells: implications for hepatitis C virus pathogenesis. Innate Immun, 2013, doi: 10.1177/1753425913503385
[9]  9 Yoshio S, Kanto T, Kuroda S, et al. Human blood dendritic cell antigen 3 (BDCA3)+ dendritic cells are a potent producer of interferon-l in response to hepatitis C virus. Hepatology, 2013, 57: 1705-1715
[10]  10 Ank N, West H, Bartholdy C, et al. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol, 2006, 80: 4501-4509
[11]  11 Agrawal A. Mechanisms and implications of age-associated impaired innate interferon secretion by dendritic cells: a mini-review. Gerontology, 2013, 59: 421-426
[12]  12 Sorgeloos F, Kreit M, Hermant P, et al. Antiviral type I and type III interferon responses in the central nervous system. Viruses, 2013, 5: 834-857
[13]  13 Presnell S R, Cohen F E. Topological distribution of four-alpha-helix bundles. Proc Natl Acad Sci USA, 1989, 86: 6592-6596
[14]  14 Chang C, Magracheva E, Kozlov S, et al. Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J Biol Chem, 2003, 278: 3308-3313
[15]  15 Gad H H, Hamming O J, Hartmann R. The structure of human interferon lambda and what it has taught us. J Interferon Cytokine Res, 2010, 30: 565-571
[16]  16 Gad H H, Dellgren C, Hamming O J, et al. Interferon-l is functionally an interferon but structurally related to the interleukin-10 family. J Biol Chem, 2009, 284: 20869-20875
[17]  17 Dellgren C, Gad H H, Hamming O J, et al. Human interferon-l3 is a potent member of the type III interferon family. Genes Immun, 2009, 10: 125-131
[18]  18 Miknis Z J, Magracheva E, Li W, et al. Crystal structure of human interferon-l1 in complex with its high-affinity receptor interferon-lR1. J Mol Biol, 2010, 404: 650-664
[19]  19 Hubbard T, Barker D, Birney E, et al. The Ensembl genome database project. Nucleic Acids Res, 2002, 30: 38-41
[20]  20 Fox B A, Sheppard P O, O''Hara P J. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family. PLoS One, 2009, 4: e4933
[21]  21 Kotenko S V. The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev, 2002, 13: 223-240
[22]  22 Donnelly R P, Dickensheets H, O''Brien T R. Interferon-lambda and therapy for chronic hepatitis C virus infection. Trends Immunol, 2011, 32: 443-450
[23]  23 Lasfar A, Lewis-Antes A, Smirnov S V, et al. Characterization of the mouse IFN-λ ligand-receptor system: IFN-λs exhibit antitumor activity against B16 melanoma. Cancer Res, 2006, 66: 4468-4477
[24]  24 Eferl R, Wagner E F. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer, 2003, 3: 859-868
[25]  25 Li Q, Verma I M. NF-kappaB regulation in the immune system. Nat Rev Immunol, 2002, 2: 725-734
[26]  26 Silverman N, Maniatis T. NF-kB signaling pathways in mammalian and insect innate immunity. Genes Dev, 2001, 15: 2321-2342
[27]  27 Genin P, Vaccaro A, Civas A. The role of differential expression of human interferon-A genes in antiviral immunity. Cytokine Growth Factor Rev, 2009, 20: 283-295
[28]  28 Honda K, Takaoka A, Taniguchi T. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity, 2006, 25: 349-360
[29]  29 Onoguchi K, Yoneyama M, Takemura A, et al. Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem, 2007, 282: 7576-7581
[30]  30 ?sterlund P I, Pietil? T E, Veckman V, et al. IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-λ) genes. J Immunol, 2007, 179: 3434-3442
[31]  31 Thomson S J, Goh F G, Banks H, et al. The role of transposable elements in the regulation of IFN-l1 gene expression. Proc Natl Acad Sci USA, 2009, 106: 11564-11569
[32]  32 Stoltz M, Klingstrom J. Alpha/beta interferon (IFN-α/b)-independent induction of IFN-λ1 (interleukin-29) in response to Hantaan virus infection. J Virol, 2010, 84: 9140-9148
[33]  33 Konturek S J, Kieta-Fyda A, Moczurad K. The influence of gastrin analogues and 2-deoxy-D-glucose on bile secretion. Am J Digest Dis, 1967, 12: 955-961
[34]  34 Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol, 2005, 175: 2851-2858
[35]  35 Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005, 6: 981-988
[36]  36 Li K, Chen Z, Kato N, et al. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-b production in hepatocytes. J Biol Chem, 2005, 280: 16739-16747
[37]  37 Boveris A A, Stoppani A O. Action of androgens on phosphorylating rat-liver mitochondria. Rev Soc Argent Biol, 1966, 42: 118-129
[38]  38 Gale M Jr, Foy E M. Evasion of intracellular host defence by hepatitis C virus. Nature, 2005, 436: 939-945
[39]  39 Schroder M, Bowie A G. TLR3 in antiviral immunity: key player or bystander? Trends Immunol, 2005, 26: 462-468
[40]  40 Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005, 23: 165-175
[41]  41 Honda K, Yanai H, Negishi H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature, 2005, 434: 772-777
[42]  42 Ank N, Iversen M B, Bartholdy C, et al. An important role for type III interferon (IFN-λ/IL-28) in TLR-induced antiviral activity. J Immunol, 2008, 180: 2474-2485
[43]  43 Forbes R L, Gibson P G, Murphy V E, et al. Impaired type I and III interferon response to rhinovirus infection during pregnancy and asthma. Thorax, 2012, 67: 209-214
[44]  44 Sykes A, Edwards M R, Macintyre J, et al. TLR3, TLR4 and TLRs7-9 induced interferons are not impaired in airway and blood cells in well controlled asthma. PLoS One, 2013, 8: e65921
[45]  45 Ioannidis I, Ye F, McNally B, et al. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol, 2013, 87: 3261-3270
[46]  46 Li J, Wang Y, Wang X, et al. Immune activation of human brain microvascular endothelial cells inhibits HIV replication in macrophages. Blood, 2013, 121: 2934-2942
[47]  47 Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811
[48]  48 Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411: 494-498
[49]  49 Unterholzner L, Keating S E, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol, 2010, 11: 997-1004
[50]  50 Sui H, Zhou M, Chen Q, et al. siRNA enhances DNA-mediated interferon lambda-1 response through crosstalk between RIG-I and IFI16 signalling pathway. Nucleic Acids Res, 2014, 42: 583-598
[51]  51 Zitzmann K, Brand S, Baehs S, et al. Novel interferon-ls induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun, 2006, 344: 1334-1341
[52]  52 Pestka S. The interferon receptors. Semin Oncol, 1997, 24: S9-18-S19-40
[53]  53 Pestka S, Krause C D, Walter M R. Interferons, interferon-like cytokines, and their receptors. Immunol Rev, 2004, 202: 8-32
[54]  54 Dumoutier L, Lejeune D, Hor S, et al. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochem J, 2003, 370: 391-396
[55]  55 Maher S G, Sheikh F, Scarzello A J, et al. IFNa and IFNl differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther, 2008, 7: 1109-1115
[56]  56 Platanias L C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol, 2005, 5: 375-386
[57]  57 Zhou Z, Hamming O J, Ank N, et al. Type III interferon (IFN) induces a type I IFN-λike response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol, 2007, 81: 7749-7758
[58]  59 Kroczynska B, Joshi S, Eklund E A, et al. Regulatory effects of ribosomal S6 kinase 1 (RSK1) in IFNl signaling. J Biol Chem, 2011, 286: 1147-1156
[59]  60 Coccia E M, Severa M, Giacomini E, et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and l interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol, 2004, 34: 796-805
[60]  61 Arnold M M, Sen A, Greenberg H B, et al. The battle between rotavirus and its host for control of the interferon signaling pathway. PLoS Pathog, 2013, 9: e1003064
[61]  62 Hou W, Wang X, Ye L, et al. Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. J Virol, 2009, 83: 3834-3842
[62]  63 Liu M Q, Zhou D J, Wang X, et al. IFN-λ3 inhibits HIV infection of macrophages through the JAK-STAT pathway. PLoS One, 2012, 7: e35902
[63]  64 Zhou Y, Wang X, Liu M, et al. A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology, 2010, 131: 40-49
[64]  65 Tian R R, Guo H X, Wei J F, et al. IFN-λ inhibits HIV-1 integration and post-transcriptional events in vitro, but there is only limited in vivo repression of viral production. Antiviral Res, 2012, 95: 57-65
[65]  66 Serra C, Biolchini A, Mei A, et al. Type III and I interferons increase HIV uptake and replication in human cells that overexpress CD4, CCR5, and CXCR4. AIDS Res Hum Retrovirus, 2008, 24: 173-180
[66]  67 Contoli M, Message S D, Laza-Stanca V, et al. Role of deficient type III interferon-l production in asthma exacerbations. Nat Med, 2006, 12: 1023-1026
[67]  68 Corne J M, Marshall C, Smith S, et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet, 2002, 359: 831-834
[68]  69 Hewson C A, Jardine A, Edwards M R, et al. Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol, 2005, 79: 12273-12279
[69]  70 Satoh Y, Sakamoto A, Yamada K, et al. Psammoma bodies in metastatic carcinoma to the thyroid. Mod Pathol, 1990, 3: 267-270
[70]  71 Shao M X, Ueki I F, Nadel J A. Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA, 2003, 100: 11618-11623
[71]  72 Monick M M, Cameron K, Staber J, et al. Activation of the epidermal growth factor receptor by respiratory syncytial virus results in increased inflammation and delayed apoptosis. J Biol Chem, 2005, 280: 2147-2158
[72]  58 Brand S, Beigel F, Olszak T, et al. IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Am J Physiol-Gastr Liver Physiol, 2005, 289: G960-G968
[73]  74 Koff J L, Shao M X, Ueki I F, et al. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol Lung Cell Mol Physiol, 2008, 294: L1068-L1075
[74]  75 Mordstein M, Neugebauer E, Ditt V, et al. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J Virol, 2010, 84: 5670-5677
[75]  76 Khaitov M R, Laza-Stanca V, Edwards M R, et al. Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy, 2009, 64: 375-386
[76]  77 Pott J, Mahlakoiv T, Mordstein M, et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci USA, 2011, 108: 7944-7949
[77]  78 Ueki I F, Min-Oo G, Kalinowski A, et al. Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon l and antiviral defense in airway epithelium. J Exp Med, 2013, 210: 1929-1936
[78]  79 Tamura T, Yanai H, Savitsky D, et al. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol, 2008, 26: 535-584
[79]  80 Siegel R, Eskdale J, Gallagher G. Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. J Immunol, 2011, 187: 5636-5644
[80]  81 Zaheer R S, Proud D. Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. Am J Respir Cell Mol Biol, 2010, 43: 413-421
[81]  82 Okabayashi T, Kojima T, Masaki T, et al. Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. Virus Res, 2011, 160: 360-366
[82]  83 Jewell N A, Cline T, Mertz S E, et al. Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol, 2010, 84: 11515-11522
[83]  84 Kim H J, Kim C H, Ryu J H, et al. Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cells. Am J Respir Cell Mol Biol, 2013, 49: 855-865
[84]  85 Koarai A, Sugiura H, Yanagisawa S, et al. Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol, 2010, 42: 651-660
[85]  86 Shao M X, Nadel J A. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA, 2005, 102: 767-772
[86]  87 Zhu L, Lee P K, Lee W M, et al. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol, 2009, 40: 610-619
[87]  88 Gonzalez-Dosal R, Horan K A, Rahbek S H, et al. HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors: role for S-glutathionylation of TRAF3 and 6. PLoS Pathog, 2011, 7: e1002250
[88]  89 Torres C, Brahm J, Venegas M. Lambda interferon serum levels in patients with chronic hepatitis C virus infection according to their response to therapy with pegylated interferon and ribavirin. J Interferon Cytokine Res, 2014, 34: 106-110
[89]  90 Nakagawa S, Hirata Y, Kameyama T, et al. Targeted induction of interferon-lambda in humanized chimeric mouse liver abrogates hepatotropic virus infection. PLoS One, 2013, 8: e59611
[90]  91 Wang B X, Fish E N. The yin and yang of viruses and interferons. Trends Immunol, 2012, 33: 190-197
[91]  92 Baril M, Racine M E, Penin F, et al. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. J Virol, 2009, 83: 1299-1311
[92]  93 Kumthip K, Chusri P, Jilg N, et al. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J Virol, 2012, 86: 8581-8591
[93]  94 Yu G Y, He G, Li C Y, et al. Hepatic expression of HCV RNA-dependent RNA polymerase triggers innate immune signaling and cytokine production. Mol Cell, 2012, 48: 313-321
[94]  95 Wang Y, Li J, Wang X, et al. Hepatitis C virus impairs TLR3 signaling and inhibits IFN-λ1 expression in human hepatoma cell line. Innate Immun, 2014, 20: 3-11
[95]  96 Ge D, Fellay J, Thompson A J, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature, 2009, 461: 399-401
[96]  97 Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-a and ribavirin therapy for chronic hepatitis C. Nat Genet, 2009, 41: 1105-1109
[97]  98 Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-a and ribavirin therapy. Nat Genet, 2009, 41: 1100-1104
[98]  99 Rauch A, Kutalik Z, Descombes P, et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology, 2010, 138: 1338-1345.e7
[99]  100 Miller D M, Klucher K M, Freeman J A, et al. Interferon lambda as a potential new therapeutic for hepatitis C. Ann NY Acad Sci, 2009, 1182: 80-87
[100]  101 Muir A J, Shiffman M L, Zaman A, et al. Phase 1b study of pegylated interferon lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology, 2010, 52: 822-832
[101]  102 Ramos E L. Preclinical and clinical development of pegylated interferon-lambda 1 in chronic hepatitis C. J Interferon Cytokine Res, 2010, 30: 591-595
[102]  103 Hadziyannis S J, Sette H Jr, Morgan T R, et al. Peginterferon-a2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med, 2004, 140: 346-355
[103]  104 Rosen H R. Chronic hepatitis C infection. New Engl J Med, 2011, 364: 2429-2438
[104]  73 Liu K, Gualano R C, Hibbs M L, et al. Epidermal growth factor receptor signaling to Erk1/2 and STATs control the intensity of the epithelial inflammatory responses to rhinovirus infection. J Biol Chem, 2008, 283: 9977-9985
[105]  105 Coto-Llerena M, Perez-Del-Pulgar S, Crespo G, et al. Donor and recipient IL28B polymorphisms in HCV-infected patients undergoing antiviral therapy before and after liver transplantation. Am J Transplant, 2011, 11: 1051-1057
[106]  106 Bolen C R, Ding S, Robek M D, et al. Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology, 2014, 59: 1262-1272
[107]  107 Jilg N, Lin W, Hong J, et al. Kinetic differences in the induction of interferon stimulated genes by interferon-a and interleukin 28B are altered by infection with hepatitis C virus. Hepatology, 2014, 59: 1250-1261
[108]  108 Francois-Newton V, Magno de Freitas Almeida G, Payelle-Brogard B, et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon alpha response. PLoS One, 2011, 6: e22200
[109]  109 Makowska Z, Duong F H, Trincucci G, et al. Interferon-b and interferon-l signaling is not affected by interferon-induced refractoriness to interferon-a in vivo. Hepatology, 2011, 53: 1154-1163
[110]  110 Burkart C, Arimoto K, Tang T, et al. Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to IFN-λ and elevated secretion of Cxcl10. EMBO Mol Med, 2013, 5: 967-982
[111]  111 Lebreton A, Lakisic G, Job V, et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, 2011, 331: 1319-1321
[112]  112 Bierne H, Travier L, Mahlak?iv T, et al. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One, 2012, 7: e39080.
[113]  113 Cohen T S, Prince A S. Bacterial pathogens activate a common inflammatory pathway through IFNl regulation of PDCD4. PLoS Pathog, 2013, 9: e1003682
[114]  114 Tezuka Y, Endo S, Matsui A, et al. Potential anti-tumor effect of IFN-λ2 (IL-28A) against human lung cancer cells. Lung Cancer, 2012, 78: 185-192
[115]  115 Li W, Huang X, Liu Z, et al. Type III interferon induces apoptosis in human lung cancer cells. Oncol Rep, 2012, 28: 1117-1125
[116]  116 Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007, 35: 495-516
[117]  117 Urban T J, Thompson A J, Bradrick S S, et al. IL28B genotype is associated with differential expression of intrahepatic interferon- stimulated genes in patients with chronic hepatitis C. Hepatology, 2010, 52: 1888-1896
[118]  118 Thomas D L, Thio C L, Martin M P, et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature, 2009, 461: 798-801
[119]  119 Hsu C S, Hsu S J, Chen H C, et al. Association of IL28B gene variations with mathematical modeling of viral kinetics in chronic hepatitis C patients with IFN plus ribavirin therapy. Proc Natl Acad Sci USA, 2011, 108: 3719-3724
[120]  120 Venegas M, Villanueva R A, Gonzalez K, et al. IL28B polymorphisms associated with therapy response in Chilean chronic hepatitis C patients. World J Gastroenterol, 2011, 17: 3636-3639
[121]  121 Sarrazin C, Susser S, Doehring A, et al. Importance of IL28B gene polymorphisms in hepatitis C virus genotype 2 and 3 infected patients. J Hepatol, 2011, 54: 415-421
[122]  122 Chinnaswamy S, Chatterjee S, Boopathi R, et al. A single nucleotide polymorphism associated with hepatitis C virus infections located in the distal region of the IL28B promoter influences NF-kB-mediated gene transcription. PLoS One, 2013, 8: e75495
[123]  123 Afdhal N H, McHutchison J G, Zeuzem S, et al. Hepatitis C pharmacogenetics: state of the art in 2010. Hepatology, 2011, 53: 336-345
[124]  124 Prokunina-Olsson L, Muchmore B, Tang W, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet, 2013, 45: 164-171
[125]  125 International HapMap Consortium. The International HapMap Project. Nature, 2003, 426: 789-796
[126]  126 Katsounas A, Schlaak J F, Lempicki R A. CCL5: a double-edged sword in host defense against the hepatitis C virus. Int Rev Immunol, 2011, 30: 366-378
[127]  127 Kang S M, Lim S, Won S J, et al. c-Fos regulates hepatitis C virus propagation. FEBS Lett, 2011, 585: 3236-3244
[128]  128 Kim S U, Song K J, Chang H Y, et al. Association between IL28B polymorphisms and spontaneous clearance of hepatitis B virus infection. PLoS One, 2013, 8: e69166
[129]  129 Zhang Q, Lapalus M, Asselah T, et al. IFNL3 (IL28B) polymorphism does not predict long-term response to interferon therapy in HBeAg-positive chronic hepatitis B patients. J Viral Hepatitis, 2014, 21: 525-532
[130]  130 de Niet A, Takkenberg R B, Benayed R, et al. Genetic variation in IL28B and treatment outcome in HBeAg-positive and -negative chronic hepatitis B patients treated with Peg interferon alfa-2a and adefovir. Scand J Gastroenterol, 2012, 47: 475-481

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133