全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

猪骨骼肌MyHC-Ⅱb基因上调表达的分子机制

DOI: 10.1360/N052014-00136, PP. 35-42

Keywords: ,MyHC-Ⅱb,上调,启动子,Myf-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

哺乳动物骨骼肌由各种不同类型的肌纤维镶嵌而成,不同类型肌球蛋白重链的表达是造成不同类型肌纤维的主要原因.目前已知的肌球蛋白重链家族包含8种亚型,其中长白猪骨骼肌MyHC-Ⅱb的表达量显著高于中国地方猪,然而造成这种差异的分子机制未见报道.本研究用荧光定量PCR证明了长白猪背最长肌中MyHC-ⅡbmRNA的表达量显著高于莱芜猪(P=0.013).删除实验结果表明,从转录起始位点上游-1024bp删除到-187bp之后,MyHC-Ⅱb表达量显著下降,分析发现,在这段启动子区域内存在3个E-box序列;分别突变这3个E-box序列后,MyHC-Ⅱb启动子驱动的荧光素酶活性显著下降(P=0.036).另外,在MyHC-Ⅱb上游启动子区-1398bp处发现一个G>T的突变,所检测的64头莱芜猪在该位点全部为GG型,65头长白猪中13头为GG型,16头为TT型,36头为GT型.在C2C12细胞系中的转染实验结果显示,G突变为T之后有增加MyHC-Ⅱb表达的趋势.Westernblot的结果表明,转录因子MyoD在两猪种间表达差异不显著(P=0.136),而Myf-5在长白猪中的表达量极显著高于其在莱芜猪中的表达量(P=0.0036).这些数据表明,Myf-5是造成猪MyHC-Ⅱb基因mRNA上调表达的重要因素之一.

References

[1]  1 Weiss A, Leinwand L A. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol, 1996, 12: 417-439
[2]  2 Talmadge R J, Roy R R, Edgerton V R. Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Rec, 1999, 255: 188-201
[3]  3 Guo J, Shan T, Wu T, et al. Comparisons of different muscle metabolic enzymes and muscle fiber types in Jinhua and Landrace pigs. J Anim Sci, 2011, 89: 185-191
[4]  4 呼红梅, 王继英, 朱荣生, 等. 莱芜猪和杜洛克猪肌肉肌球蛋白重链组成对肉质性状的影响. 中国科学C辑: 生命科学, 2008, 38: 60-65
[5]  5 Diagana T T, North D L, Jabet C, et al. The transcriptional activity of a muscle-specific promoter depends critically on the structure of the TATA element and its binding protein. J Mol Biol, 1997, 265: 480-493
[6]  6 Lakich M M, Diagana T T, North D L, et al. MEF-2 and Oct-1 bind to two homologous promoter sequence elements and participate in the expression of a skeletal muscle-specific gene. J Biol Chem, 1998, 273: 15217-15226
[7]  7 Swoap S J. In vivo analysis of the myosin heavy chain IIB promoter region. Am J Physiol, 1998, 274: C681-C687
[8]  8 Takeda S, North D L, Lakich M M, et al. A possible regulatory role for conserved promoter motifs in an adult-specific muscle myosin gene from mouse. J Biol Chem, 1992, 267: 16957-16967
[9]  9 Takeda S, North D L, Diagana T, et al. Myogenic regulatory factors can activate TATA-containing promoter elements via an E-box independent mechanism. J Biol Chem, 1995, 270: 15664-15670
[10]  10 Wheeler M T, Snyder E C, Patterson M N, et al. An E-box within the MHC IIB gene is bound by MyoD and is required for gene expression in fast muscle. Am J Physiol, 1999, 5: C1069-C1078
[11]  11 Edmondson D G, Olson E N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem, 1993, 268: 755
[12]  12 Olson E N, Klein W H. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev, 1994, 8: 1-8
[13]  13 Allen D L, Sartorius C A, Sycuro L K, et al. Different pathways regulate expression of the skeletal myosin heavy chain genes. J Biol Chem, 2001, 276: 43524-43533
[14]  14 曾勇庆. 山东地方猪种资源的现状和养猪业的发展. 中国畜牧杂志, 2004, 40: 33-35
[15]  15 周立平. 长白猪主要性能测定及遗传参数估计研究. 湖南农业科学, 2011: 122-124
[16]  16 Xu Y J, Jin M L, Wang L J, et al. Differential proteome analysis of porcine skeletal muscles between Meishan and Large White. J Anim Sci, 2009, 87: 2519-2527
[17]  17 杨晓静, 赵茹茜, 陈杰, 等. 猪背最长肌肌纤维类型的发育性变化及其品种和性别特点. 中国兽医学报, 2005, 25: 89-94
[18]  18 Gustafson T A, Markham B E, Bahl J J, et al. Thyroid hormone regulates expression of a transfected α-myosin heavy-chain fusion gene in fetal heart cells. Proc Natl Acad Sci USA, 1987: 3122-3126
[19]  19 Molkentin J D, Markham B E. Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem, 1993, 268: 19512-19520
[20]  20 Thompson W R, Nadal-Ginard B, Mahdavi V. A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. J Biol Chem, 1991, 266: 22678-22688
[21]  21 Buttrick P M, Kass A, Kitsis R N, et al. Behavior of genes directly injected into the rat heart in vivo. Circ Res, 1992, 70: 193-198
[22]  22 Knotts S, Rindt H, Neumann J, et al. In vivo regulation of the mouse beta myosin heavy chain gene. J Biol Chem, 1994, 269: 31275-31282
[23]  23 Rindt H, Gulick J, Knotts S, et al. In vivo analysis of the murine beta-myosin heavy chain gene promoter. J Biol Chem, 1993, 268: 5332-5338
[24]  24 Subramaniam A, Jones W K, Gulick J, et al. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem, 1991, 266: 24613-24620
[25]  25 Bouvagnet P F, Strehler E E, White G E, et al. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol Cell Biol, 1987, 7: 4377-4389
[26]  26 Massari M E, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol, 2000, 20: 429-440
[27]  27 Sabourin L A, Rudnicki M A. The molecular regulation of myogenesis. Clin Genet, 2000, 57: 16-25
[28]  28 Bryson-Richardson R J, Currie P D. The genetics of vertebrate myogenesis. Nat Rev Genet, 2008, 9: 632-646
[29]  29 Punch V G, Jones A E, Rudnicki M A. Transcriptional networks that regulate muscle stem cell function. Wiley Interdiscip Rev Syst Biol Med, 2009, 1: 128-140
[30]  30 Bismuth K, Relaix F. Genetic regulation of skeletal muscle development. Exp Cell Res, 2010, 316: 3081-3086

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133