1 Knipe D, Howley P, Griffin D E, et al. Fields Virology. 6th Ed. Philadelphia: Lippincott Williams & Wilkins, 2013
[2]
2 Paul W E. Fundamental Immunology. 7th Ed. Philadelphia: Lippincott Williams & Wilkins, 2012
[3]
3 Jost S, Altfeld M, Chang J J. Harnessing innate and adaptive immunity for viral vaccine design. Expert Rev Vaccines, 2012, 11: 775-777
[4]
4 Pulendran B, Li S, Nakaya H I. Systems vaccinology. Immunity, 2010, 33: 516-529
[5]
5 Du X, Dong L, Lan Y, et al. Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommend- ation. Nat Commun, 2012, 3: 709
[6]
6 Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol, 2009, 9: 741-747
[7]
7 Modlin R L. Innate immunity: ignored for decades, but not forgotten. J Invest Dermatol, 2012, 132: 882-886
[8]
8 Platt A, Wetzler L. Innate immunity and vaccines. Curr Top Med Chem, 2013, 13: 2597-2608
[9]
9 Beutler B. Innate immunity: an overview. Mol Immunol, 2004, 40: 845-859
[10]
10 Kaisho T, Akira S. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand, 2001, 59: 124-130
[11]
11 Tough D F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma, 2004, 45: 257-264
[12]
12 Zhao G N, Jiang D S, Li H. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta, 2014, doi: 10.1016/j.bbadis.2014.04.030
[13]
13 Liu S Y, Sanchez D J, Cheng G. New developments in the induction and antiviral effectors of type I interferon. Curr Opin Immunol, 2011, 23: 57-64
[14]
14 Shrivastav M, Niewold T B. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front Immunol, 2013, 4: 319
[15]
15 Cai X, Chiu Y H, Chen Z J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell, 2014, 54: 289-296
[16]
16 Ishikawa H, Ma Z, Barber G N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461: 788-792
[17]
17 Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005, 6: 981-988
[18]
18 Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity, 2008, 29: 538-550
[19]
19 Zhou Q, Lin H, Wang S, et al. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING- dependent innate immune signaling. Cell Host Microbe, 2014, 16: 450-461
[20]
20 Ivashkiv L B, Donlin L T. Regulation of type I interferon responses. Nat Rev Immunol, 2014, 14: 36-49
[21]
21 Fuchs S Y. Ubiquitination-mediated regulation of interferon responses. Growth Factors, 2012, 30: 141-148
[22]
22 Liu S Y, Sanchez D J, Aliyari R, et al. Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci USA, 2012, 109: 4239-4244
[23]
23 Liu S Y, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity, 2013, 38: 92-105
[24]
24 Schoggins J W, Wilson S J, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature, 2011, 472: 481-485
[25]
25 Gao S, von der Malsburg A, Paeschke S, et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature, 2010, 465: 502-506
[26]
27 Goff S P. Retrovirus restriction factors. Mol Cell, 2004, 16: 849-859
[27]
28 Zhu Y, Gao G. ZAP-mediated mRNA degradation. RNA Biol, 2008, 5: 65-67
[28]
29 Chen S, Xu Y, Zhang K, et al. Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nat Struct Mol Biol, 2012, 19: 430-435
[29]
30 Schneider W M, Chevillotte M D, Rice C M. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014, 32: 513-545
[30]
31 Feeley E M, Sims J S, John S P, et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog, 2011, 7: e1002337
[31]
32 Bailey C C, Huang I C, Kam C, et al. Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog, 2012, 8: e1002909
[32]
33 Everitt A R, Clare S, Pertel T, et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature, 2012, 484: 519-523
[33]
34 Amini-Bavil-Olyaee S, Choi Y J, Lee J H, et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe, 2013, 13: 452-464
[34]
35 Desai T M, Marin M, Chin C R, et al. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog, 2014, 10: e1004048
[35]
36 Zhu X, He Z, Yuan J, et al. IFITM3-containing exosome as a novel mediator for anti-viral response in dengue virus infection. Cell Microbiol, 2014, doi: 10.1111/cmi.12339
[36]
37 Brass A L, Huang I C, Benita Y, et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009, 139: 1243-1254
[37]
38 Huang I C, Bailey C C, Weyer J L, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog, 2011, 7: e1001258
[38]
39 Li K, Markosyan R M, Zheng Y M, et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog, 2013, 9: e1003124
[39]
40 Yount J S, Karssemeijer R A, Hang H C. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem, 2012, 287: 19631-19641
[40]
41 John S P, Chin C R, Perreira J M, et al. The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol, 2013, 87: 7837-7852
[41]
42 Ozato K, Shin D M, Chang T H, et al. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol, 2008, 8: 849-860
[42]
43 Versteeg G A, Rajsbaum R, Sanchez-Aparicio M T, et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity, 2013, 38: 384-398
[43]
44 Turrini F, Di Pietro A, Vicenzi E. Lentiviral effector pathways of TRIM proteins. DNA Cell Biol, 2014, 33: 191-197
[44]
45 Jain A, Baviskar P S, Kandasamy S, et al. Interferon stimulated gene 15 (ISG15): molecular characterization and expression profile in endometrium of buffalo (Bubalus bubalis). Anim Reprod Sci, 2012, 133: 159-168
[45]
46 Zhang D, Zhang D E. Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res, 2011, 31: 119-130
48 Schoggins J W, Randall G. Lipids in innate antiviral defense. Cell Host Microbe, 2013, 14: 379-385
[48]
49 Heaton N S, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol, 2011, 19: 368-375
[49]
50 Wisskirchen K, Lucifora J, Michler T, et al. New pharmacological strategies to fight enveloped viruses. Trends Pharmacol Sci, 2014, 35: 470-478
[50]
51 Plemper R K. Cell entry of enveloped viruses. Curr Opin Virol, 2011, 1: 92-100
[51]
52 Blanc M, Hsieh W Y, Robertson K A, et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity, 2013, 38: 106-118
[52]
53 Blanc M, Hsieh W Y, Robertson K A, et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol, 2011, 9: e1000598
[53]
54 Teissier E, Zandomeneghi G, Loquet A, et al. Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PLoS One, 2011, 6: e15874
[54]
55 Zasloff M, Adams A P, Beckerman B, et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc Natl Acad Sci USA, 2011, 108: 15978-15983
[55]
56 Sainz B Jr, Barretto N, Martin D N, et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med, 2012, 18: 281-285
[56]
57 Lucifora J, Esser K, Protzer U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antiviral Res, 2013, 97: 195-197
[57]
58 St Vincent M R, Colpitts C C, Ustinov A V, et al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc Natl Acad Sci USA, 2010, 107: 17339-17344
[58]
59 Wolf M C, Freiberg A N, Zhang T, et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc Natl Acad Sci USA, 2010, 107: 3157-3162
[59]
60 Turner C. Ebola virus disease: an emerging threat. Nursing, 2014, 44: 68-69
[60]
61 Incident Management System Ebola Epidemiology Team, CDC; Ministries of Health of Guinea, Sierra Leone, Liberia, Nigeria, and Senegal; Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, CDC. Ebola virus disease outbreak—west Africa, september 2014. MMWR Morb Mortal Wkly Rep, 2014, 63: 865-866
[61]
26 Haller O, Kochs G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res, 2011, 31: 79-87
[62]
62 Scheel T K, Rice C M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med, 2013, 19: 837-849