全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国主要树种木材物理力学属性的地理格局及其环境控制

DOI: 10.1360/N052014-00211, PP. 56-67

Keywords: 木材密度,干缩系数,冲击韧性,地理格局,环境因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

木材的物理力学属性制约树木生长发育的重要过程,也是决定木材用途的主要依据.研究木材的物理力学属性及其影响因素,可为合理应用木材、科学开展林木选育、改进林业管理等提供必要参考.目前已有的研究多关注单一的木材密度指标,且缺乏多种影响因子的比较.本研究通过建立中国木材物理力学属性及影响因素综合数据库,对自然状态下我国主要树种木材力学属性的分布格局及其驱动因素进行了探讨.结果表明,选择气干密度、弦向干缩系数和冲击韧性作为评估木材物理力学属性的基础指标,比单一木材密度指标更准确,解释率更高;在选用的生活型、气候和土壤等3类因素中,生活型是影响木材力学物理属性变化的最重要因素,气候因子次之,土壤因子基本可忽略,并且气候和土壤因子的作用被生活型所掩盖,这意味着气候因子对于木材物理力学属性的影响是通过影响物种分布而产生作用的.

References

[1]  16 Carlquist S. Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. New York: Springer, 2001
[2]  17 Quesada C A, Phillips O L, Schwarz M, et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9: 2203-2246
[3]  18 Briffa K, Schweingruber F, Jones P, et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391: 678-682
[4]  19 Muller-Landau H C. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 2004, 36: 20-32
[5]  20 Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecol Lett, 2009, 12: 351-366
[6]  21 Zanne A E, Westoby M, Falster D S, et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot, 2010, 97: 207-215
[7]  22 Poorter L, McDonald I, Alarcón A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol, 2010, 185: 481-492
[8]  23 成俊卿, 杨宗驹, 刘鹏. 中国木材志. 北京: 中国林业出版社, 1992
[9]  24 中国林业科学研究院木材工业研究所. 中国主要树种的木材物理力学性质. 北京: 中国林业出版社, 1982
[10]  25 姜笑梅, 程业明, 殷亚方. 中国裸子植物木材志. 北京: 科学出版社, 2010
[11]  26 鲍甫成, 江泽慧. 中国主要人工林树种木材性质. 北京: 中国林业出版社, 1998
[12]  27 赵春瑞, 董玉库. 木材物理力学性质的综合分析(ⅱ)—相关分析. 东北林业大学学报, 1989, 17: 45-54
[13]  28 董王库, 赵春瑞. 木材物理力学性质的综合分析(ⅰ)—主成分分析. 东北林业大学学报, 1988, 16: 105-118
[14]  29 Zhang S B, Slik J, Zhang J L, et al. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecol Biogeogr, 2011, 20: 241-250
[15]  30 方精云, 王志恒, 唐志尧. 中国木本植物分布图集. 北京: 高等教育出版社, 2009
[16]  31 Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25: 1965-1978
[17]  32 Ma W H, He J S, Yang Y H, et al. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecol and Biogeogr, 2010, 19: 233-243
[18]  33 Yang Y, Mohammat A, Feng J, et al. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 2007, 84: 131-141
[19]  34 Yang Y, Ma W, Mohammat A, et al. Storage, patterns and controls of soil nitrogen in China. Pedosphere, 2007, 17: 776-785
[20]  35 熊毅, 李锦. 中国土壤图集. 北京: 科学出版社, 1986
[21]  36 R Development Core Team. R: a language and environment for statistical computing. R foundation for statistical computing. Vienna: R Development Core Team, 2014
[22]  37 Lê S, Josse J, Husson F. Factominer: an R package for multivariate analysis. J Stat Software, 2008, 25: 1-18
[23]  38 Armstrong J, Skaar C. The effect of specific gravity on several mechanical properties of some world woods. Wood Sci Technol, 1984, 18: 137-146
[24]  39 陈瑞, 童方平, 李贵, 等. 黧蒴栲木材材性、化学组分及热值株内纵向变异模式研究. 中国农学通报, 2013, 29: 24-28
[25]  15 Bowyer J L, Shmulsky R, Haygreen J G. Forest Products and Wood Science: An Introduction. Ames: Blackwell Publishing, 2007
[26]  1 Hickey M, King C. The Cambridge Illustrated Glossary of Botanical Terms. Cambridge: Cambridge University Press, 2000
[27]  2 成俊卿. 木材学. 北京: 中国林业出版社, 1985
[28]  3 Wu R. Microstructural study of sanded and polished wood by replication. Wood Sci Technol, 1998, 32: 247-260
[29]  4 Roderick M L, Berry S L. Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol, 2001, 149: 473-485
[30]  5 Ter Steege H, Hammond D S. Character convergence, diversity, and disturbance in tropical rain forest in Guyana. Ecology, 2001, 82: 3197-3212
[31]  6 Larjavaara M, Muller-Landau H C. Rethinking the value of high wood density. Funct Ecol, 2010, 24: 701-705
[32]  7 Sterck F J, Bongers F, Newbery D M. Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. In: Eduard Linsenmair K, Davis A J, Fiala B, et al, eds. Tropical Forest Canopies: Ecology and Management. Dordrecht: Springer Netherlands, 2001. 279-292
[33]  8 Van Gelder H, Poorter L, Sterck F. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol, 2006, 171: 367-378
[34]  9 Swenson N G, Enquist B J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot, 2007, 94: 451-459
[35]  10 Chao K J, Phillips O L, Gloor E, et al. Growth and wood density predict tree mortality in Amazon forests. J Ecol, 2008, 96: 281-292
[36]  11 Baker T R, Phillips O L, Malhi Y, et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol, 2004, 10: 545-562
[37]  12 Chave J, Muller-Landau H C, Baker T R, et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl, 2006, 16: 2356-2367
[38]  13 Bergman R, Cai Z, Carll C G, et al. Wood Handbook: Wood As an Engineering Material. Madison: United States Department of Agriculture, Forest Service, Forest Products Laboratory, 2010
[39]  14 FAO. FAO Yearbook of Forest Products 2011. Rome: Food and Agriculture Organization of the United Nations, 2013
[40]  40 季孔庶, 邱进清, 陈亚斌, 等. 马尾松纸浆材无性系选育和多地点试种. 林业科学, 2004, 40: 64-69
[41]  41 管宁, 刘昭息, 潘志刚. 不同种源火炬松和湿地松木材基本密度和管胞长度的变异. 林业科学研究, 1993, 6: 235-241
[42]  42 冯缨, 徐海量, 周斌. 塔里木河流域下游植物区系及生态学研究. 西北植物学报, 2005, 25: 2285-2288
[43]  43 Beets P, Gilchrist K, Jeffreys M. Wood density of radiata pine: effect of nitrogen supply. Forest Ecol Manag, 2001, 145: 173-180
[44]  44 Barajas-Morales J. Wood specific gravity in species from two tropical forests in Mexico. Iawa Bull, 1987, 8: 143-148
[45]  45 Pati?o S, Lloyd J, Paiva R, et al. Branch xylem density variations across the Amazon basin. Biogeosciences, 2009, 6: 545-568
[46]  46 Wiemann M C, Williamson G B. Geographic variation in wood specific gravity: effects of latitude, temperature, and precipitation. Wood Fiber Sci, 2002, 34: 96-107
[47]  47 Currie D J. Energy and large-scale patterns of animal-and plant-species richness. Am Nat, 1991, 137: 27-49
[48]  48 Wang Z, Fang J, Tang Z, et al. Patterns, determinants and models of woody plant diversity in China. Proc R Soc B-Biol Sci, 2011, 278: 2122-2132
[49]  49 Chave J. Neutral theory and community ecology. Ecol Lett, 2004, 7: 241-253
[50]  50 Barber V A, Juday G P, Finney B P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 2000, 405: 668-673
[51]  51 Novaes E, Kirst M, Chiang V, et al. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol, 2010, 154: 555-561

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133