全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石果衣真菌(Endocarponpusillum)比较转录组分析揭示其抗旱特性

, PP. 43-55

Keywords: 地衣,共生菌,脱水,干旱适应性,干旱抗性

Full-Text   Cite this paper   Add to My Lib

Abstract:

从沙漠地区地衣石果衣中分离得到的地衣型真菌(Endocarponpusillum)具有极强的抗旱能力.为了研究石果衣真菌的抗旱机制,本研究利用转录组测序和荧光定量的方法分别对纯培养和共生状态的真菌进行分析和比较.比较转录组分析是针对纯培养的石果衣真菌,比较其在正常培养和胁迫培养条件下的2个样品,得到1781个差异表达基因.以抗旱植物和非地衣型真菌的抗旱机制作为参照,一些普遍存在机制中所涉及的基因在石果衣真菌中也是差异表达的.然而不同的是,石果衣真菌的抗旱机制中不涉及有关渗透压调节基因的差异表达,这一特点为揭示石果衣真菌为干旱适应物种提供了证据.此外,石果衣真菌不同于其他生物,还有一系列差异基因被归类于其特有的干旱适应机制.为了确定共生与纯培养状态下的石果衣真菌的抗旱机制是否一致,本研究挑选了23个候选基因,利用荧光定量的方法在脱水地衣体中进行验证.本研究为下一步地衣型真菌的研究提供有价值的数据支持,同时也会有助于抗旱基因的功能研究.

References

[1]  1 Brown D, Rapsch S, Beckett A, et al. The effect of desiccation on cell shape in the lichen Parmelia sulcata Taylor. New Phytol, 1987, 105: 295-299
[2]  2 Bewley J D. Physiological-aspects of desiccation tolerance. Annu Rev Plant Physiol, 1979, 30: 195-238
[3]  3 Oliver M J, Derek Bewley J. Desiccation-tolerance of plant tissues: a mechanistic overview. Hortic Rev, 1997, 18: 171-213
[4]  4 Kappen L. Response to Extreme Environments. New York: Academic Press, 1973. 311-380
[5]  5 Aubert S, Juge C, Boisson A M, et al. Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta, 2007, 226: 1287-1297
[6]  6 Kranner I. Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol, 2002, 154: 451-460
[7]  7 Lange O L. Experimentell-?kologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrotlierten Bedingungen im Laboratorium. Flora, 1969, 158: 324-359
[8]  8 Ascaso C, Brown D, Rapsch S. The ultrastructure of the phycobiont of desiccated and hydrated lichens. Lichenologist, 1986, 18: 37-46
[9]  9 Kranner I, Cram W J, Zorn M, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA, 2005, 102: 3141-3146
[10]  10 Nash T, Reiner A, Demmig-Adams B, et al. The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol, 1990, 116: 269-276
[11]  11 Tuba Z, Csintalan Z, Proctor M C. Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration. New Phytol, 1996, 133: 353-361
[12]  12 Calatayud A, Deltoro V I, Barreno E, et al. Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol Plantarum, 1997, 101: 93-102
[13]  13 Weissman L, Garty J, Hochman A. Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl Environ Microb, 2005, 71: 6508-6514
[14]  14 Fran?a M B, Panek A D, Eleutherio E C A. The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress Chaperon, 2005, 10: 167
[15]  15 Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410
[16]  16 Kranner I, Birtic S. A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol, 2005, 45: 734-740
[17]  17 Junttila S, Laiho A, Gyenesei A, et al. Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genomics, 2013, 14: 870
[18]  18 Wang Y Y, Liu B, Zhang X Y, et al. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics, 2014, 15: 34
[19]  19 Veerman J, Vasil''ev S, Paton G D, et al. Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching. Plant Physiol, 2007, 145: 997-1005
[20]  20 Scheidegger C, Schroeter B, Frey B. Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta, 1995, 197: 399-409
[21]  21 Holder J, Wynn-Williams D, Rull Perez F, et al. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the antarctic and mediterranean. New Phytol, 2000, 145: 271-280
[22]  22 张涛, 魏江春. 分离自石果衣的共生菌藻在干燥饥饿胁迫下存活能力分析. 中国科学: 生命科学, 2011, 41: 238-248
[23]  23 Lagerwer J, Eagle H E, Ogata G. Control of osmotic pressure of culture solutions with polyethylene glycol. Science, 1961, 133: 1486-1487
[24]  24 Caruso A, Chefdor F, Carpin S, et al. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. J Plant Physiol, 2008, 165: 932-941
[25]  25 Vivas A, Marulanda A, Ruiz-Lozano J M, et al. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 2003, 13: 249-256
[26]  26 Haas B J, Delcher A L, Mount S M, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res, 2003, 31: 5654-5666
[27]  27 Stanke M, Morgenstern B. Augustus: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res, 2005, 33: W465-W467
[28]  28 Parra G, Blanco E, Guigó R. GeneID in Drosophila. Genome Res, 2000, 10: 511-515
[29]  29 Ter-Hovhannisyan V, Lomsadze A, Chernoff Y O, et al. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res, 2008, 18: 1979-1990
[30]  30 Haas B J, Salzberg S L, Zhu W, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol, 2008, 9: R7
[31]  32 Sonnhammer E L L, Koonin E V. Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet, 2002, 18: 619-620
[32]  33 Ruepp A, Zollner A, Maier D, et al. The funcat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res, 2004, 32: 5539-5545
[33]  34 Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-D280
[34]  35 Tarazona S, García-Alcalde F, Dopazo J, et al. Differential expression in RNA-seq: a matter of depth. Genome Res, 2011, 21: 2213-2223
[35]  36 Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nat Protoc, 2008, 3: 1101-1108
[36]  37 Gotz S, Garcia-Gomez J M, Terol J, et al. High-throughput functional annotation and data mining with the Blast2Go suite. Nucleic Acids Res, 2008, 36: 3420-3435
[37]  38 Bray E A. Molecular responses to water deficit. Plant Physiol, 1993, 103: 1035-1040
[38]  39 Ben-Zvi A P, Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol, 2001, 135: 84-93
[39]  40 Welch A Z, Gibney P A, Botstein D, et al. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell, 2013, 24: 115-128
[40]  41 Nyska A, Kohen R. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol, 2002, 30: 620-650
[41]  42 Navrot N, Rouhier N, Gelhaye E, et al. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plantarum, 2007, 129: 185-195
[42]  43 Tamai K T, Liu X D, Silar P, et al. Heat-shock transcription factor activates yeast metallothionein gene-expression in response to heat and glucose starvation via distinct signaling pathways. Mol Cell Biol, 1994, 14: 8155-8165
[43]  44 Damveld R A, Arentshorst M, Franken A, et al. The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol Microbiol, 2005, 58: 305-319
[44]  45 Guo M, Chen Y, Du Y, et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog, 2011, 7: e1001302
[45]  46 Voitsik A M, Muench S, Deising H B, et al. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biol, 2013, 13: 85
[46]  47 Nicholls S, Straffon M, Enjalbert B, et al. Msn2-and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell, 2004, 3: 1111-1123
[47]  48 Debouba M, Maaroufi-Dghimi H, Suzuki A, et al. Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann Bot, 2007, 99: 1143-1151
[48]  49 Planchet E, Rannou O, Ricoult C, et al. Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. J Exp Bot, 2011, 62: 605-615
[49]  50 Dittami S M, Scornet D, Petit J L, et al. Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol, 2009, 10: R66
[50]  51 Foito A, Byrne S L, Shepherd T, et al. Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnol J, 2009, 7: 719-732
[51]  52 Gulez G, Dechesne A, Workman C T, et al. Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Appl Environ Microbiol, 2012, 78: 676-683
[52]  53 Mooney S, Leuendorf J E, Hendrickson C, et al. Vitamin B6: a long known compound of surprising complexity. Molecules, 2009, 14: 329-351
[53]  54 Bilski P, Li M, Ehrenshaft M, et al. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol, 2000, 71: 129-134
[54]  55 Chen H, Xiong L. Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J, 2005, 44: 396-408
[55]  56 Kranner I, Beckett R, Hochman A, et al. Desiccation-tolerance in lichens: a review. Bryologist, 2008, 111: 576-593
[56]  57 Grune T, Reinheckel T, Davies K. Degradation of oxidized proteins in mammalian cells. FASEB J, 1997, 11: 526-534
[57]  58 Sassa H, Oguchi S, Inoue T, et al. Primary structural features of the 20S proteasome subunits of rice Oryza sativa. Gene, 2000, 250: 61-66
[58]  59 Wu P, Wang X, Qin G X, et al. Microarray analysis of the gene expression profile in the midgut of silkworm infected with cytoplasmic polyhedrosis virus. Mol Biol Rep, 2011, 38: 333-341
[59]  60 Rajjou L, Belghazi M, Huguet R, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol, 2006, 141: 910-923
[60]  61 Huang H, Moller I M, Song S Q. Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics, 2012, 75: 1247-1262
[61]  62 Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239-264
[62]  63 Shao H B, Liang Z S, Shao M A. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloid Surface B, 2006, 47: 132-139
[63]  64 Ashraf M, Foolad M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206-216
[64]  31 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25-29
[65]  65 Hounsa C G, Brandt E V, Thevelein J, et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 1998, 144: 671-680
[66]  66 Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnol Adv, 2010, 28: 169-183
[67]  67 Bahn Y S, Xue C, Idnurm A, et al. Sensing the environment: lessons from fungi. Nat Rev Microbiol, 2007, 5: 57-69
[68]  68 Alonso-Monge R, Roman E, Arana D M, et al. Fungi sensing environmental stress. Clin Microbiol Infec, 2009, 15: 17-19
[69]  69 Fernandes L, Araujo M A, Amaral A, et al. Cell signaling pathways in Paracoccidioides brasiliensis—inferred from comparisons with other fungi. Genet Mol Res, 2005, 4: 216-231
[70]  70 Brown S M, Campbell LT, Lodge J K. Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol, 2007, 10: 320-325
[71]  71 Li B, Nierras C R, Warner J R. Transcriptional elements involved in the repression of ribosomal protein synthesis. Mol Cell Biol, 1999, 19: 5393-5404
[72]  72 Warner J R. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1989, 53: 256-271
[73]  73 Warner J R. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci, 1999, 24: 437-440
[74]  74 Mauro V P, Edelman G M. The ribosome filter hypothesis. Proc Natl Acad Sci USA, 2002, 99: 12031-12036
[75]  75 Adhikari B N, Wall D H, Adams B J. Desiccation survival in an Antarctic nematode: molecular analysis using expressed sequenced tags. BMC Genomics, 2009, 10: 69
[76]  76 Angelovici R, Galili G, Fernie A R, et al. Seed desiccation: a bridge between maturation and germination. Trends Plant Sci, 2010, 15: 211-218
[77]  77 Pearson G A, Hoarau G, Lago-Leston A, et al. An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotechnol, 2010, 12: 195-213
[78]  78 Piper P W. The heat-shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett, 1995, 134: 121-127
[79]  79 Tezara W, Mitchell V J, Driscoll S D, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 1999, 401: 914-917
[80]  80 Toldi O, Tuba Z, Scott P. Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci, 2009, 176: 187-199
[81]  81 Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 2006, 9: 189-195
[82]  82 Abdel Latef A A H. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 2011, 21: 495-503
[83]  83 Strominger J L. Nucleotide intermediates in the biosynthesis of heteropolymeric polysaccharides. Biophys J, 1964, 4: 139-153
[84]  84 Gibeaut D M. Nucleotide sugars and glycosyltransferases for synthesis of cell wall matrix polysaccharides. Plant Physiol Bioch, 2000, 38: 69-80
[85]  85 Roberts M R, Warner S A, Darby R, et al. Differential regulation of a glucosyl transferase gene homologue during defence responses in tobacco. J Exp Bot, 1999, 50: 407-410
[86]  86 O''Donnell P J, Truesdale M R, Calvert C M, et al. A novel tomato gene that rapidly responds to wound- and pathogen- related signals. Plant J, 1998, 14: 137-142
[87]  87 Gauslaa Y, Solhaug K A. Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia, 2001, 126: 462-471

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133