26 Elsik C G, Tellam R L, Worley K C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324: 522-528
[27]
27 Qiu Q, Zhang G, Ma T, et al. The yak genome and adaptation to life at high altitude. Nat Genet. 2012, 44: 946-949
[28]
28 Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25: 1966-1967
[29]
29 Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621-628
[30]
30 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
[31]
31 Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 2006, 34: W293-W297
[32]
32 Yeh J R, Nagano M C. Spermatogonial stem cell biomarkers: improved outcomes of spermatogonial transplantation in male fertility restoration? Expert Rev Mol Diagn, 2009, 9: 109-114
[33]
33 Kubota H, Avarbock M R, Brinster R L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA, 2003, 100: 6487-6492
[34]
34 Goertz M J, Wu Z, Gallardo T D, et al. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest, 2011, 121: 3456-3466
[35]
35 Phillips B T, Gassei K, Orwig K E. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc B-Biol Sci, 2010, 365: 1663-1678
[36]
36 Diatchenko L, Lau Y, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030
[37]
37 Wang P J, McCarrey J R, Yang F, et al. An abundance of X-linked genes expressed in spermatogonia. Nat Genet, 2001, 27: 422-426
[38]
38 Schumacher J M, Lee K, Edelhoff S, et al. Distribution of Tenr, an RNA-binding protein, in a lattice-like network within the spermatid nucleus in the mouse. Biol Reprod, 1995, 52: 1274-1283
[39]
39 Welch J, Schatte E, O''Brien D, et al. Expression of a glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells. Biol Reprod, 1992, 46: 869-878
[40]
40 Kleene K C, Flynn J F. Characterization of a cDNA clone encoding a basic protein, TP2, involved in chromatin condensation during spermiogenesis in the mouse. J Biol Chem, 1987, 262: 17272-17277
[41]
41 Ren D, Navarro B, Perez G, et al. A sperm ion channel required for sperm motility and male fertility. Nature, 2001, 413: 603-609
[42]
42 Zhang F P, Pakarainen T, Zhu F, et al. Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology, 2004, 145: 1453-1463
[43]
43 Haider S G. Cell biology of Leydig cells in the testis. Int Rev Cytol, 2004, 233: 181-241
[44]
44 O''shaughnessy P, Willerton L, Baker P. Changes in Leydig cell gene expression during development in the mouse. Biol Reprod, 2002, 66: 966-975
[45]
45 O''Shaughnessy P, Hu L, Baker P. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction, 2008, 135: 839-850
[46]
46 Suter L, Koch E, Bechter R, et al. Three-parameter flow cytometric analysis of rat spermatogenesis. Cytometry, 1997, 27: 161-168
[47]
47 Franke F E, Pauls K, Rey R, et al. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl), 2004, 209: 169-177
[48]
53 Huszar J M, Payne C J. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod, 2012, 88: 15
[49]
54 Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate in mammals. Development, 2007, 134: 3401-3411
[50]
55 Bowles J, Knight D, Smith C, et al. Retinoid signaling determines germ cell fate in mice. Science, 2006, 312: 596-600
[51]
56 Koubova J, Menke D B, Zhou Q, et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA, 2006, 103: 2474-2479
58 De Cesare D, Fimia G M, Sassone-Corsi P. CREM, a master-switch of the transcriptional cascade in male germ cells. J Endocrinol Invest, 2000, 23: 592-596
[54]
59 Juvan P, Perse M, Budefeld T, et al. Novel insights into the downstream pathways and targets controlled by transcription factors CREM in the testis. PLoS One, 2012, 7: e31798
[55]
60 Tanaka H, Baba T. Gene expression in spermiogenesis. Cell Mol Life Sci, 2005, 62: 344-354
[56]
111 Yuan L, Liu J G, Hoja M R, et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science, 2002, 296: 1115-1118
[57]
112 Schramm S, Fraune J, Naumann R, et al. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet, 2011, 7: e1002088
[58]
113 ?llinger R, Alsheimer M, Benavente R. Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol Biol Cell, 2005, 16: 212-217
[59]
114 Yuan L, Liu J G, Zhao J, et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell, 2000, 5: 73-83
129 Fujisawa M, Shirakawa T, Fujioka H, et al. Adenovirus-mediated p53 gene transfer to rat testis impairs spermatogenesis. Arch Androl, 2001, 46: 223-231
[62]
130 Aitken R J, Findlay J K, Hutt K J, et al. Apoptosis in the germ line. Reproduction, 2011, 141: 139-150
[63]
131 Mackay F, Kalled S L. TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol, 2002, 14: 783-790
[64]
132 Zhao G Q, Deng K, Labosky P A, et al. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev, 1996, 10: 1657-1669
[65]
133 Feng H L, Sandlow J I, Sparks A E, et al. Decreased expression of the c-kit receptor is associated with increased apoptosis in subfertile human testes. Fertil Steril, 1999, 71: 85-8
[66]
48 Yomogida K, Ohtani H, Harigae H, et al. Developmental stage-and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development, 1994, 120: 1759-1766
[67]
49 Morita K, Sasaki H, Fujimoto K, et al. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol, 1999, 145: 579-588
[68]
50 P?ll?nen P P, Kallajoki M, Risteli L, et al. Laminin and type IV collagen in the human testis. Int J Androl, 1985, 8: 337-347
52 Tong M H, Mitchell D, Evanoff R, et al. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod, 2011, 85: 189-197
63 Koziol M J, Garrett N, Gurdon J. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol, 2007, 17: 801-807
[74]
64 Mizuno K, Kojima Y, Kurokawa S, et al. Identification of differentially expressed genes in human cryptorchid testes using suppression subtractive hybridization. J Urol, 2009, 181: 1330-1337
[75]
65 Wang G, Hardy M P. Development of leydig cells in the insulin-like growth factor-I (igf-I) knockout mouse: effects of igf-I replacement and gonadotropic stimulation. Biol Reprod, 2004, 70: 632-639
[76]
66 Baker J, Hardy M P, Zhou J, et al. Effects ofan IGF-1 gene null mutation onmouse reproduction. Mol Endocrinol, 1996, 10: 903-918
[77]
67 Catena R, Escoffier E, Caron C, et al. HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol Reprod, 2009, 80: 358-366
[78]
68 Martianov I, Brancorsini S, Catena R, et al. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci USA, 2005, 102: 2808-2813
[79]
69 Kleene K C, Bagarova J. Comparative genomics reveals gene-specific and shared regulatory sequences in the spermatid-expressed mammalian Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes. Genomics, 2008, 92: 101-106
[80]
70 Meistrich M L, Mohapatra B, Shirley C R, et al. Roles of transition nuclear proteins in spermiogenesis. Chromosoma, 2003, 111: 483-488
[81]
71 Ullas K S, Rao M R. Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem, 2003, 278: 52673-52680
[82]
72 Giorgini F, Davies H G, Braun R E. MSY2 and MSY4 bind a conserved sequence in the 3′ untranslated region of protamine 1 mRNA in vitro and in vivo. Mol Cell Biol, 2001, 21: 7010-7019
[83]
73 Yang J, Medvedev S, Yu J, et al. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci USA, 2005, 102: 5755-5760
[84]
74 Akhmanova A, Gunderson S I, Polycarpou-Schwarz M, et al. In Vitro Analysis of Polyadenylation of the Drosophila melanogaster Histone H3.3B Pre-mRNA. Nijmegen: Katholieke Universiteit Nijmegen, 1997
[85]
75 Kohn M J, Kaneko K J, DePamphilis M L. DkkL1 (Soggy), a Dickkopf family member, localizes to the acrosome during mammalian spermatogenesis. Mol Reprod Dev, 2005, 71: 516-522
78 Dai L, Tsai-Morris C H, Sato H, et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem, 2011, 286: 44306-44318
[89]
79 Gutti R K, Tsai-Morris C H, Dufau M L. Gonadotropin-regulated testicular helicase (DDX25), an essential regulator of spermatogenesis, prevents testicular germ cell apoptosis. J Biol Chem, 2008, 283: 17055-17064
[90]
80 Wang C, Swerdloff R S. Male contraception. Best Pract Res Clin Obstet Gynaecol, 2002, 16: 193-203
[91]
81 Qamar I, Gong E Y, Kim Y, et al. Anti-steroidogenic factor ARR19 inhibits testicular steroidogenesis through the suppression of Nur77 transactivation. J Biol Chem, 2010, 285: 22360-22369
[92]
82 Qamar I, Park E, Gong E Y, et al. ARR19 (androgen receptor corepressor of 19 kDa), an antisteroidogenic factor, is regulated by GATA-1 in testicular Leydig cells. J Biol Chem, 2009, 284: 18021-18032
[93]
83 Narula A, Gu Y Q, O''Donnell L, et al. Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle stimulating hormone suppression and not to intratesticular androgens. J Clin Endocrinol Metab, 2002, 87: 3399-3406
[94]
84 O''Donnell L, Narula A, Balourdos G, et al. Impairment of spermatogonial development and spermiation after testosterone- induced gonadotropin suppression in adult monkeys (Macaca fascicularis). J Clin Endocrinol Metab, 2001, 86: 1814-1822
[95]
85 Kavarthapu R, Tsai-Morris C H, Fukushima M, et al. A 5′-flanking region of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) gene directs its cell-specific androgen-regulated gene expression in testicular germ cells. Endocrinology, 2013, 154: 2200-2207
[96]
86 Boyer A, Hermo L, Paquet M, et al. Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in sertoli cells. Biol Reprod, 2008, 79: 475-485
88 Braydich-Stolle L, Kostereva N, Dym M, et al. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol, 2007, 304: 34-45
[99]
89 Laurenti E, Varnum-Finney B, Wilson A, et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell, 2008, 3: 611-624
[100]
90 Caires K, Broady J, McLean D. Maintaining the male germline: regulation of spermatogonial stem cells. J Endocrinol, 2010, 205: 133-145
[101]
91 Meng X, Lindahl M, Hyv?nen M E, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science, 2000, 287: 1489-1493
[102]
92 van Bragt M P, Roepers-Gajadien H L, Korver C M, et al. Expression of the pluripotency marker UTF1 is restricted to a subpopulation of early A spermatogonia in rat testis. Reproduction, 2008, 136: 33-40
[103]
93 Marcon L, Zhang X, Hales B F, et al. Effects of chemotherapeutic agents for testicular cancer on rat spermatogonial stem/progenitor cells. J Androl, 2011, 32: 432-443
[104]
94 Falender A E, Freiman R N, Geles K G, et al. Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev, 2005, 19: 794-803
[105]
95 Plant T M, Marshall G R. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr Rev, 2001, 22: 764-786
[106]
96 Swain A. Sex determination: time for meiosis? The gonad decides. Curr Biol, 2006, 16: R507-R509
[107]
97 Zhou Q, Nie R, Li Y, et al. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol Reprod, 2008, 79: 35-42
[108]
98 Anderson E L, Baltus A E, Roepers-Gajadien H L, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA, 2008, 105: 14976-14980
[109]
99 Mark M, Jacobs H, Oulad-Abdelghani M, et al. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J Cell Sci, 2008, 121: 3233-3242
[110]
100 Chung S S, Wang X, Wolgemuth D J. Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development, 2009, 136: 2091-2100
[111]
101 Roeder G S. Meiotic chromosomes: it takes two to tango. Genes Dev, 1997, 11: 2600-2621
[112]
102 Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet, 1999, 33: 603-754
[113]
103 Heyting C. Synaptonemal complexes: structure and function. Curr Opin Cell Biol, 1996, 8: 389-396
[114]
104 Page S L, Hawley R S. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol, 2004, 20: 525-558
[115]
105 Egozcue J, Sarrate Z, Codina-Pascual M, et al. Meiotic abnormalities in infertile males. Cytogenet Genome Res, 2005, 111: 337-342
[116]
106 Bascom-Slack C A, Ross L O, Dawson D S. Chiasmata, crossovers, and meiotic chromosome segregation. Adv Gene, 1996, 35: 253-284
[117]
107 Page S L, Hawley R S. Chromosome choreography: the meiotic ballet. Science, 2003, 301: 785-789
[118]
108 Yuan L, Pelttari J, Brundell E, et al. The synaptonemal complex protein SCP3 can form multistranded, cross-striated fibers in vivo. J Cell Biol, 1998, 142: 331-339
[119]
109 Pelttari J, Hoja M R, Yuan L, et al. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Biol Cell, 2001, 21: 5667-5677
[120]
110 Liebe B, Alsheimer M, Hoog C, et al. Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell, 2004, 15: 827-837
[121]
115 Crackower M A, Kolas N K, Noguchi J, et al. Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science, 2003, 300: 1291-1295
[122]
116 Pittman D L, Cobb J, Schimenti K J, et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell, 1998, 1: 697-705
[123]
117 Yoshida K, Kondoh G, Matsuda Y, et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell, 1998, 1: 707-718
[124]
118 Kagawa W, Kurumizaka H. From meiosis to postmeiotic events: uncovering the molecular roles of the meiosis-specific recombinase Dmc1. FEBS J, 2010, 277: 590-598
[125]
119 Habu T, Taki T, West A, et al. The mouse and human homologs of DMC1, the yeast meiosis-specific homologous recombination gene, have a common unique form of exon-skipped transcript in meiosis. Nucleic Acids Res, 1996, 24: 470-477
[126]
120 Billig H, Furuta I, Rivier C, et al. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology, 1995, 136: 5-12
[127]
121 Shaha C, Tripathi R, Mishra D P. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc B-Biol Sci, 2010, 365: 1501-1515
[128]
122 Rojas-García P P, Recabarren M P, Sarabia L, et al. Prenatal testosterone excess alters Sertoli and germ cell number and testicular FSH receptor expression in rams. Am J Physiol Endocrinol Metab, 2010, 299: E998-E1005
[129]
123 Beumer T L, Roepers-Gajadien H L, Gademan I S, et al. The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ, 1998, 5: 669-677
[130]
124 Shetty G, Shao S H, Weng C C. p53-dependent apoptosis in the inhibition of spermatogonial differentiation in juvenile spermatogonial depletion (Utp14b jsd) mice. Endocrinology, 2008, 149: 2773-2781
[131]
125 Lee J, Richburg J H, Younkin S C, et al. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology, 1997, 138: 2081-2088
[132]
126 Youle R J, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008, 9: 47-59
[133]
127 Yin C, Knudson C M, Korsmeyer S J, et al. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 1997, 385: 637-640