全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

犏牛精子发生阻滞的比较转录组研究

DOI: 10.1360/N052013-00078, PP. 584-601

Keywords: 犏牛,牦牛,睾丸,转录组,精子发生

Full-Text   Cite this paper   Add to My Lib

Abstract:

犏牛是牦牛与普通牛的杂交后代,其雄性不育是牦牛杂交改良中的一大难题.运用高通量测序技术对健康成年犏牛和牦牛的睾丸组织进行转录组测序和比较研究,探讨了犏牛激素调节、精子发生及细胞凋亡等相关基因的表达情况.结果表明,犏牛、牦牛睾丸组织中分别有17784和18529个基因表达,在犏牛中表达显著上调和下调的基因分别有5000和4089个.犏牛睾丸组织中睾酮合成相关基因和抑制素基因表达均显著上调,认为前者的表达上调可能促进睾丸内睾酮分泌和后者的表达,而后者的表达上调可能分别抑制和几乎不影响脑垂体前叶合成、分泌促卵泡刺激素和黄体生成素.比较睾丸组织中细胞标记基因在两种牛间的表达差异,发现犏牛精原干细胞、支持细胞、间质细胞、肌样细胞(睾丸纤维化)和已分化精原细胞的标记基因分别呈显著表达上调和下调,而减数分裂后期或精子形成期呈极显著下调.精原干细胞自我更新与分化异常可能导致犏牛精子发生障碍,认为其与视黄酸信号通路障碍密切相关.Syce3,Fkbp6和Dmrt7等在犏牛睾丸组织中极显著表达下调与同源染色体间、尤其是性染色体间的联会复合体数量减少有关.Spo11和Dmc1分别参与双链断裂和同源修复过程,其在犏牛睾丸中表达下调分别可能使联会复合体减少和同源修复失常.参与高度浓缩细胞核的相关基因,尤其是Tnp2,Hmgb4和H1fnt等几乎不表达,其调控表达基因Crem,GRTH/DDX25等极显著表达下调,该现象与犏牛生精细胞最终只能分化至圆形精子细胞阶段的结果相符.促凋亡相关基因,如p53,TNF-α,Trail,Bmp8b,Bax,Caspase-3,Caspase-6和Caspase-7表达均显著上调,而抑凋亡基因,如survivin,Bcl-2等显著下调,这可能是导致犏牛睾丸组织中有更多的生精细胞发生凋亡的原因之一.通过对生殖相关基因的表达分析研究,为揭示犏牛雄性不育机理以及牦牛杂交改良研究提供了理论基础.

References

[1]  1 《中国牦牛学》编写委员会. 中国牦牛学. 成都: 四川科学技术出版社, 1989. 2442-2452
[2]  2 刘辉, 田惠萍, 崔定中, 等. 牦牛、黄牛、犏牛的垂体、间质细胞和支持细胞的比较. 中国牦牛, 1990, 3: 25-29
[3]  3 刘辉, 王丽琴, 郑丕芝. 牦牛、黄牛、犏牛垂体远侧部细胞的定量组织学研究. 中国牦牛, 1994, 1: 34-36
[4]  4 罗晓林, 吴克选, 杨荣珍. 从血液中LH、T、P4、17β-E2含量昼夜变化探讨公犏牛性行为正常的生理机制. 草食家畜, 1996, 2: 41-43, 48
[5]  5 罗晓林. 从垂体的超微结构探讨公犏牛的不育性. 西南民族学院学报(自然科学版), 1993, 19: 4-13
[6]  6 谭春富, 孙延鸣, 赖明荣, 等. 牦牛、杂交一代犏牛雄性生殖器官的比较解剖. 中国牦牛, 1990, 3: 39-45
[7]  7 赵善廷, 秦传芳, 王士平, 等. 犏牛及其亲本(牦牛和黄牛)睾丸的定量组织学比较研究. 中国牦牛, 1990, 3: 30-34
[8]  8 夏洛浚, 刘辉, 成正邦, 等. 犏牛精子发生的观察与分析. 中国牦牛, 1990, 3: 19-24
[9]  9 Beginkulov B. K. 刘辉译. 家牦牛、黄牛及其杂种的细胞遗传学研究. 中国牦牛, 1988, 1: 70-72
[10]  10 郭爱朴. 牦牛、黄牛及其杂交后代犏牛的染色体比较研究. 遗传学报, 1983, 10: 137-143
[11]  11 李孔亮, 芦鸣计, 刘汉英, 等. 犏牛及其亲本(牦牛, 黄牛)体细胞染色体研究. 中国牦牛, 1984, 1: 42-46
[12]  12 钟金城, 张成忠, 蔡立. 牦牛(Bos Grunniens)染色体高分辨G带带型的研究. 西南民族学院学报(自然科学版), 1992, 18: 20-28
[13]  13 陈文元, 王喜忠, 王子淑, 等. 牦牛、黑白花牛及其杂交后代的染色体研究. 中国牦牛, 1990, 1: 23-29
[14]  14 胡欧明, 钟金城, 陈智华, 等. 犏牛精母细胞联会复合体与雄性不育关系的研究. 西南民族学院学报(自然科学版), 2000, 26: 61-66
[15]  15 胡欧明, 钟金城, 陈智华, 等. 牦牛与普通牛杂种一代精母细胞联会复合体分析. 云南大学学报(自然科学版), 1999, 21: 230
[16]  16 付永, 魏雅萍, 陈生梅. 黄牛、牦牛和犏牛睾丸组织中Boule基因mRNA表达水平. 中国畜牧杂志, 2013, 49: 10-13
[17]  17 付永, 魏雅萍, 吴克选, 等. Real-time PCR检测黄牛、牦牛、犏牛睾丸组织中Boule、Dazl基因mRNA表达. 生物技术通报, 2012, 10: 150-155
[18]  18 付永. Dazl基因mRNA表达水平与犏牛雄性不育关系的研究. 青海畜牧兽医杂志, 2012, 42: 9-11
[19]  19 骆骅, 贾超, 屈旭光, 等. 黄牛、牦牛和犏牛b-Sycp2基因的克隆与睾丸组织mRNA的表达水平. 中国农业科学, 2013, 46: 367-375
[20]  20 周阳, 骆骅, 李伯江, 等. 牦牛和犏牛睾丸组织DDX4基因mRNA表达水平与启动子区甲基化. 中国农业科学, 2013, 46: 630-638
[21]  21 李新福, 李齐发, 李隐侠, 等. 黄犏牛与黄牛b-Boule基因编码区序列、结构、表达模式和睾丸组织表达水平的差异分析. 自然科学进展, 2009, 19: 1042-1048
[22]  22 张庆波, 李齐发, 李家璜, 等. 牛精子发生相关新基因b-DAZL的克隆、生物信息学分析与组织表达研究. 自然科学进展, 2008, 18: 493-504
[23]  23 屈旭光, 李齐发, 刘振山, 等. 牦牛、犏牛睾丸组织中SYCP3基因mRNA表达水平研究. 畜牧兽医学报, 2008, 39: 1132-1136
[24]  24 金帅, 郭宪, 包鹏甲, 等. 牦牛和犏牛Dmrt7基因序列分析及其在睾丸组织中的表达水平. 中国农业科学, 2013, 46: 1036-1043
[25]  25 刘振山, 李齐发, 张庆波, 等. 犏牛及其亲本IGF2基因mRNA表达水平、DNA甲基化状态差异分析. 自然科学进展, 2009, 19: 380-385
[26]  26 Elsik C G, Tellam R L, Worley K C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324: 522-528
[27]  27 Qiu Q, Zhang G, Ma T, et al. The yak genome and adaptation to life at high altitude. Nat Genet. 2012, 44: 946-949
[28]  28 Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25: 1966-1967
[29]  29 Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621-628
[30]  30 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
[31]  31 Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 2006, 34: W293-W297
[32]  32 Yeh J R, Nagano M C. Spermatogonial stem cell biomarkers: improved outcomes of spermatogonial transplantation in male fertility restoration? Expert Rev Mol Diagn, 2009, 9: 109-114
[33]  33 Kubota H, Avarbock M R, Brinster R L. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA, 2003, 100: 6487-6492
[34]  34 Goertz M J, Wu Z, Gallardo T D, et al. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest, 2011, 121: 3456-3466
[35]  35 Phillips B T, Gassei K, Orwig K E. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc B-Biol Sci, 2010, 365: 1663-1678
[36]  36 Diatchenko L, Lau Y, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030
[37]  37 Wang P J, McCarrey J R, Yang F, et al. An abundance of X-linked genes expressed in spermatogonia. Nat Genet, 2001, 27: 422-426
[38]  38 Schumacher J M, Lee K, Edelhoff S, et al. Distribution of Tenr, an RNA-binding protein, in a lattice-like network within the spermatid nucleus in the mouse. Biol Reprod, 1995, 52: 1274-1283
[39]  39 Welch J, Schatte E, O''Brien D, et al. Expression of a glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells. Biol Reprod, 1992, 46: 869-878
[40]  40 Kleene K C, Flynn J F. Characterization of a cDNA clone encoding a basic protein, TP2, involved in chromatin condensation during spermiogenesis in the mouse. J Biol Chem, 1987, 262: 17272-17277
[41]  41 Ren D, Navarro B, Perez G, et al. A sperm ion channel required for sperm motility and male fertility. Nature, 2001, 413: 603-609
[42]  42 Zhang F P, Pakarainen T, Zhu F, et al. Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology, 2004, 145: 1453-1463
[43]  43 Haider S G. Cell biology of Leydig cells in the testis. Int Rev Cytol, 2004, 233: 181-241
[44]  44 O''shaughnessy P, Willerton L, Baker P. Changes in Leydig cell gene expression during development in the mouse. Biol Reprod, 2002, 66: 966-975
[45]  45 O''Shaughnessy P, Hu L, Baker P. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction, 2008, 135: 839-850
[46]  46 Suter L, Koch E, Bechter R, et al. Three-parameter flow cytometric analysis of rat spermatogenesis. Cytometry, 1997, 27: 161-168
[47]  47 Franke F E, Pauls K, Rey R, et al. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl), 2004, 209: 169-177
[48]  53 Huszar J M, Payne C J. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod, 2012, 88: 15
[49]  54 Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate in mammals. Development, 2007, 134: 3401-3411
[50]  55 Bowles J, Knight D, Smith C, et al. Retinoid signaling determines germ cell fate in mice. Science, 2006, 312: 596-600
[51]  56 Koubova J, Menke D B, Zhou Q, et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA, 2006, 103: 2474-2479
[52]  57 谢文军, 史典义, 蔡泽熙, 等. 联会复合体的组成、功能及遗传控. 遗传, 2012, 34: 167-176
[53]  58 De Cesare D, Fimia G M, Sassone-Corsi P. CREM, a master-switch of the transcriptional cascade in male germ cells. J Endocrinol Invest, 2000, 23: 592-596
[54]  59 Juvan P, Perse M, Budefeld T, et al. Novel insights into the downstream pathways and targets controlled by transcription factors CREM in the testis. PLoS One, 2012, 7: e31798
[55]  60 Tanaka H, Baba T. Gene expression in spermiogenesis. Cell Mol Life Sci, 2005, 62: 344-354
[56]  111 Yuan L, Liu J G, Hoja M R, et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science, 2002, 296: 1115-1118
[57]  112 Schramm S, Fraune J, Naumann R, et al. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet, 2011, 7: e1002088
[58]  113 ?llinger R, Alsheimer M, Benavente R. Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol Biol Cell, 2005, 16: 212-217
[59]  114 Yuan L, Liu J G, Zhao J, et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell, 2000, 5: 73-83
[60]  128 贺俊平, 游蓉丽, 谢建山, 等. Caspase-3和Bcl-2在小鼠出生后睾丸发育和精子发生过程的表达. 新疆农业大学学报, 2010, 33: 303-306
[61]  129 Fujisawa M, Shirakawa T, Fujioka H, et al. Adenovirus-mediated p53 gene transfer to rat testis impairs spermatogenesis. Arch Androl, 2001, 46: 223-231
[62]  130 Aitken R J, Findlay J K, Hutt K J, et al. Apoptosis in the germ line. Reproduction, 2011, 141: 139-150
[63]  131 Mackay F, Kalled S L. TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol, 2002, 14: 783-790
[64]  132 Zhao G Q, Deng K, Labosky P A, et al. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev, 1996, 10: 1657-1669
[65]  133 Feng H L, Sandlow J I, Sparks A E, et al. Decreased expression of the c-kit receptor is associated with increased apoptosis in subfertile human testes. Fertil Steril, 1999, 71: 85-8
[66]  48 Yomogida K, Ohtani H, Harigae H, et al. Developmental stage-and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development, 1994, 120: 1759-1766
[67]  49 Morita K, Sasaki H, Fujimoto K, et al. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol, 1999, 145: 579-588
[68]  50 P?ll?nen P P, Kallajoki M, Risteli L, et al. Laminin and type IV collagen in the human testis. Int J Androl, 1985, 8: 337-347
[69]  51 刘陶迪. 大鼠青春期前期精原干细胞自我更新和分化相关基因表达的初步研究. 博士学位论文. 呼和浩特: 内蒙古大学, 2012
[70]  52 Tong M H, Mitchell D, Evanoff R, et al. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod, 2011, 85: 189-197
[71]  61 王随心, 张玉华, 李向阳, 等. 生精细胞凋亡相关基因. 生命的化学, 2011, 31: 389-394
[72]  62 孙秀娟, 韩辉. 动物支持细胞的研究进展. 当代畜牧, 2011, 11: 36-38
[73]  63 Koziol M J, Garrett N, Gurdon J. Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol, 2007, 17: 801-807
[74]  64 Mizuno K, Kojima Y, Kurokawa S, et al. Identification of differentially expressed genes in human cryptorchid testes using suppression subtractive hybridization. J Urol, 2009, 181: 1330-1337
[75]  65 Wang G, Hardy M P. Development of leydig cells in the insulin-like growth factor-I (igf-I) knockout mouse: effects of igf-I replacement and gonadotropic stimulation. Biol Reprod, 2004, 70: 632-639
[76]  66 Baker J, Hardy M P, Zhou J, et al. Effects ofan IGF-1 gene null mutation onmouse reproduction. Mol Endocrinol, 1996, 10: 903-918
[77]  67 Catena R, Escoffier E, Caron C, et al. HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol Reprod, 2009, 80: 358-366
[78]  68 Martianov I, Brancorsini S, Catena R, et al. Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci USA, 2005, 102: 2808-2813
[79]  69 Kleene K C, Bagarova J. Comparative genomics reveals gene-specific and shared regulatory sequences in the spermatid-expressed mammalian Odf1, Prm1, Prm2, Tnp1, and Tnp2 genes. Genomics, 2008, 92: 101-106
[80]  70 Meistrich M L, Mohapatra B, Shirley C R, et al. Roles of transition nuclear proteins in spermiogenesis. Chromosoma, 2003, 111: 483-488
[81]  71 Ullas K S, Rao M R. Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem, 2003, 278: 52673-52680
[82]  72 Giorgini F, Davies H G, Braun R E. MSY2 and MSY4 bind a conserved sequence in the 3′ untranslated region of protamine 1 mRNA in vitro and in vivo. Mol Cell Biol, 2001, 21: 7010-7019
[83]  73 Yang J, Medvedev S, Yu J, et al. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci USA, 2005, 102: 5755-5760
[84]  74 Akhmanova A, Gunderson S I, Polycarpou-Schwarz M, et al. In Vitro Analysis of Polyadenylation of the Drosophila melanogaster Histone H3.3B Pre-mRNA. Nijmegen: Katholieke Universiteit Nijmegen, 1997
[85]  75 Kohn M J, Kaneko K J, DePamphilis M L. DkkL1 (Soggy), a Dickkopf family member, localizes to the acrosome during mammalian spermatogenesis. Mol Reprod Dev, 2005, 71: 516-522
[86]  76 于晖, 王永潮, 费仁仁, 等. 小鼠精子发生过程中泛素的表达. 发育与生殖生物学报, 2001, S1: 32
[87]  77 费江枫, 肖雪媛, 于晖, 等. 哺乳动物睾丸长形精子细胞及精子中泛素化蛋白的研究. 发育与生殖生物学报, 2001, S1: 42
[88]  78 Dai L, Tsai-Morris C H, Sato H, et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem, 2011, 286: 44306-44318
[89]  79 Gutti R K, Tsai-Morris C H, Dufau M L. Gonadotropin-regulated testicular helicase (DDX25), an essential regulator of spermatogenesis, prevents testicular germ cell apoptosis. J Biol Chem, 2008, 283: 17055-17064
[90]  80 Wang C, Swerdloff R S. Male contraception. Best Pract Res Clin Obstet Gynaecol, 2002, 16: 193-203
[91]  81 Qamar I, Gong E Y, Kim Y, et al. Anti-steroidogenic factor ARR19 inhibits testicular steroidogenesis through the suppression of Nur77 transactivation. J Biol Chem, 2010, 285: 22360-22369
[92]  82 Qamar I, Park E, Gong E Y, et al. ARR19 (androgen receptor corepressor of 19 kDa), an antisteroidogenic factor, is regulated by GATA-1 in testicular Leydig cells. J Biol Chem, 2009, 284: 18021-18032
[93]  83 Narula A, Gu Y Q, O''Donnell L, et al. Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle stimulating hormone suppression and not to intratesticular androgens. J Clin Endocrinol Metab, 2002, 87: 3399-3406
[94]  84 O''Donnell L, Narula A, Balourdos G, et al. Impairment of spermatogonial development and spermiation after testosterone- induced gonadotropin suppression in adult monkeys (Macaca fascicularis). J Clin Endocrinol Metab, 2001, 86: 1814-1822
[95]  85 Kavarthapu R, Tsai-Morris C H, Fukushima M, et al. A 5′-flanking region of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) gene directs its cell-specific androgen-regulated gene expression in testicular germ cells. Endocrinology, 2013, 154: 2200-2207
[96]  86 Boyer A, Hermo L, Paquet M, et al. Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in sertoli cells. Biol Reprod, 2008, 79: 475-485
[97]  87 李毅, 张帅, 殷钢, 等. Wnt/b-catenin信号通路在成人睾丸支持细胞增殖中的作用及其机制. 山东大学学报(医学版), 2012, 50: 55-61
[98]  88 Braydich-Stolle L, Kostereva N, Dym M, et al. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol, 2007, 304: 34-45
[99]  89 Laurenti E, Varnum-Finney B, Wilson A, et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell, 2008, 3: 611-624
[100]  90 Caires K, Broady J, McLean D. Maintaining the male germline: regulation of spermatogonial stem cells. J Endocrinol, 2010, 205: 133-145
[101]  91 Meng X, Lindahl M, Hyv?nen M E, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science, 2000, 287: 1489-1493
[102]  92 van Bragt M P, Roepers-Gajadien H L, Korver C M, et al. Expression of the pluripotency marker UTF1 is restricted to a subpopulation of early A spermatogonia in rat testis. Reproduction, 2008, 136: 33-40
[103]  93 Marcon L, Zhang X, Hales B F, et al. Effects of chemotherapeutic agents for testicular cancer on rat spermatogonial stem/progenitor cells. J Androl, 2011, 32: 432-443
[104]  94 Falender A E, Freiman R N, Geles K G, et al. Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev, 2005, 19: 794-803
[105]  95 Plant T M, Marshall G R. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr Rev, 2001, 22: 764-786
[106]  96 Swain A. Sex determination: time for meiosis? The gonad decides. Curr Biol, 2006, 16: R507-R509
[107]  97 Zhou Q, Nie R, Li Y, et al. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol Reprod, 2008, 79: 35-42
[108]  98 Anderson E L, Baltus A E, Roepers-Gajadien H L, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA, 2008, 105: 14976-14980
[109]  99 Mark M, Jacobs H, Oulad-Abdelghani M, et al. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J Cell Sci, 2008, 121: 3233-3242
[110]  100 Chung S S, Wang X, Wolgemuth D J. Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development, 2009, 136: 2091-2100
[111]  101 Roeder G S. Meiotic chromosomes: it takes two to tango. Genes Dev, 1997, 11: 2600-2621
[112]  102 Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet, 1999, 33: 603-754
[113]  103 Heyting C. Synaptonemal complexes: structure and function. Curr Opin Cell Biol, 1996, 8: 389-396
[114]  104 Page S L, Hawley R S. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol, 2004, 20: 525-558
[115]  105 Egozcue J, Sarrate Z, Codina-Pascual M, et al. Meiotic abnormalities in infertile males. Cytogenet Genome Res, 2005, 111: 337-342
[116]  106 Bascom-Slack C A, Ross L O, Dawson D S. Chiasmata, crossovers, and meiotic chromosome segregation. Adv Gene, 1996, 35: 253-284
[117]  107 Page S L, Hawley R S. Chromosome choreography: the meiotic ballet. Science, 2003, 301: 785-789
[118]  108 Yuan L, Pelttari J, Brundell E, et al. The synaptonemal complex protein SCP3 can form multistranded, cross-striated fibers in vivo. J Cell Biol, 1998, 142: 331-339
[119]  109 Pelttari J, Hoja M R, Yuan L, et al. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Biol Cell, 2001, 21: 5667-5677
[120]  110 Liebe B, Alsheimer M, Hoog C, et al. Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell, 2004, 15: 827-837
[121]  115 Crackower M A, Kolas N K, Noguchi J, et al. Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science, 2003, 300: 1291-1295
[122]  116 Pittman D L, Cobb J, Schimenti K J, et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell, 1998, 1: 697-705
[123]  117 Yoshida K, Kondoh G, Matsuda Y, et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell, 1998, 1: 707-718
[124]  118 Kagawa W, Kurumizaka H. From meiosis to postmeiotic events: uncovering the molecular roles of the meiosis-specific recombinase Dmc1. FEBS J, 2010, 277: 590-598
[125]  119 Habu T, Taki T, West A, et al. The mouse and human homologs of DMC1, the yeast meiosis-specific homologous recombination gene, have a common unique form of exon-skipped transcript in meiosis. Nucleic Acids Res, 1996, 24: 470-477
[126]  120 Billig H, Furuta I, Rivier C, et al. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology, 1995, 136: 5-12
[127]  121 Shaha C, Tripathi R, Mishra D P. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc B-Biol Sci, 2010, 365: 1501-1515
[128]  122 Rojas-García P P, Recabarren M P, Sarabia L, et al. Prenatal testosterone excess alters Sertoli and germ cell number and testicular FSH receptor expression in rams. Am J Physiol Endocrinol Metab, 2010, 299: E998-E1005
[129]  123 Beumer T L, Roepers-Gajadien H L, Gademan I S, et al. The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ, 1998, 5: 669-677
[130]  124 Shetty G, Shao S H, Weng C C. p53-dependent apoptosis in the inhibition of spermatogonial differentiation in juvenile spermatogonial depletion (Utp14b jsd) mice. Endocrinology, 2008, 149: 2773-2781
[131]  125 Lee J, Richburg J H, Younkin S C, et al. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology, 1997, 138: 2081-2088
[132]  126 Youle R J, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008, 9: 47-59
[133]  127 Yin C, Knudson C M, Korsmeyer S J, et al. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 1997, 385: 637-640

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133