全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自发性高血压大鼠血管对α1肾上腺素受体自身抗体的血管收缩作用敏感性增强

, PP. 562-570

Keywords: 自身免疫,肾上腺素受体,血管,内皮细胞,蛋白质硝基化,高血压

Full-Text   Cite this paper   Add to My Lib

Abstract:

自身免疫学机制在高血压的发生发展中具有不可忽视的作用.本研究组的前期研究表明,高血压患者血清中存在高水平的α1肾上腺素受体自身抗体(α1-AA),并对正常大鼠具有α1-AR激动剂样缩血管效应.本研究利用血管环张力测定技术观察并比较该抗体对自发性高血压大鼠(SHR)和Wistar-Kyoto(WKY)大鼠胸主动脉的收缩作用,分别采用酶联免疫吸附测定、免疫组化和免疫印迹技术观察主动脉中硝基酪氨酸和诱导性一氧化氮合酶(iNOS)的表达情况.结果表明,自发性高血压大鼠胸主动脉对去氧肾上腺素(α1-AR特异性激动剂)与α1-AA(1nmol/L~10mmol/L)的缩血管作用明显增强(P<0.05);去除内皮或利用非特异性一氧化氮合酶阻断剂(L-NAME)后,α1-AA的缩血管作用明显增强(P<0.05).iNOS特异性阻断剂1400W(10mmol/L)可以削弱上述WKY大鼠胸主动脉收缩的增强作用,而在SHR未观察到.SHR胸主动脉组织中硝基酪氨酸和iNOS的蛋白表达水平明显高于WKY大鼠.本研究结果表明,SHR对α1-AA的缩血管反应明显增强,这一变化与血管内皮功能障碍以及NO生物利用率降低有关,提示α1-AR自身免疫在高血压的发病机制和控制中,尤其是对α1-AA阳性的高血压患者发挥重要作用.

References

[1]  1 Kearney P M, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet, 2005, 365: 217-223
[2]  2 Dzielak D J. The immune system and hypertension. Hypertension, 1992, 19: I36-I44
[3]  3 Fu M L. Do immune system changes have a role in hypertension? J Hypertens, 1995, 13: 1259-1265
[4]  4 Fu M L, Herlitz H, Wallukat G, et al. Functional autoimmune epitope on alpha1-adrenergic receptors in patients with malignant hypertension. Lancet, 1994, 344: 1660-1663
[5]  5 Luther H P, Homuth V, Wallukat G. Alpha1-adrenergic receptor antibodies in patients with primary hypertension. Hypertension, 1997, 29: 678-682
[6]  6 Wenzel K, Haase H, Wallukat G, et al. Potential relevance of a1-adrenergic receptor autoantibodies in refractory hypertension. PLoS One, 2008, 3: e3742
[7]  7 Yan L, Xu Y, Yao H, et al. The effects of autoantibodies against the second extracellular loop of alpha1-adrenoceptor on vasoconstriction. Basic Res Cardiol, 2009, 104: 581-589
[8]  8 Ibarra M, López-Guerrero J J, Mejía-Zepeda R, et al. Endothelium-dependent inhibition of the contractile response is decreased in aorta from aged and spontaneously hypertensive rats. Arch Med Res, 2006, 37: 334-341
[9]  9 Linder L, Kiowski W, Bühler F R, et al. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo: blunted response in essential hypertension. Circulation, 1990, 81: 1762-1767
[10]  40 Rees D D, Cellek S, Palmer R M, et al. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun, 1990, 173: 541-547
[11]  41 Alonso M J, Rodríguez-Martínez M A, Martínez-Orgado J, et al. The L-arginine inhibition of rat middle cerebral artery contractile responses is mediated by inducible nitric oxide synthase. J Auton Pharmacol, 1998, 18: 105-113
[12]  10 Panza J A, García C E, Kilcoyne C M, et al. Impaired endothelium-dependent vasodilation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation, 1995, 91: 1732-1738
[13]  11 Panza J A, Quyyumi A A, Brush J E Jr, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl J Med, 1990, 323: 22-27
[14]  12 Guimar?es S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev, 2001, 53: 319-356
[15]  13 Li J, Cao Y X, Liu H, et al. Enhanced G-protein coupled receptors-mediated contraction and reduced endothelium-dependent relaxation in hypertension. Eur J Pharmacol, 2007, 28: 186-194
[16]  14 Behrendt D, Ganz P. Endothelial function: from vascular biology to clinical applications. Am J Cardiol, 2002, 90: L40-L48
[17]  15 Luscher T F, Boulanger G M, Yang Z, et al. Interactions between endothelium derived relaxing and contracting factors in health and cardiovascular disease. Circulation, 1993, 87: S36-S44
[18]  16 Moncada S, Palmer R M, Higgs E A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev, 1991, 43: 109-142
[19]  17 Bullock G R, Taylor S G, Weston A H. Influence of the vascular endothelium on agonist-induced contractions and relaxations in rat aorta. Brit J Pharmacol, 1986, 89: 819-830
[20]  18 Criscione L, Müller K, Forney Prescott M. Endothelial cell loss enhances the pressor response in resistance vessels. J Hypertens, 1984, 2: S441-S444
[21]  19 Eglème C, Godfraind T, Miller R C. Enhanced responsiveness of rat isolated aorta to clonidine after removal of the endothelial cell. Brit J Pharmacol, 1984, 81: 16-18
[22]  20 Martin W, Furchgott R F, Villani G M, et al. Depression of contractile responses in rat aorta by spontaneously released endothelium- derived relaxing factor. J Pharmacol Exp Ther, 1986, 237: 529-538
[23]  21 Yamaguchi T, Rodman D, O''Brien R, et al. Modulation of pulmonary artery contraction by endothelium-derived relaxing factor. Eur J Pharmacol, 1989, 161: 259-262
[24]  22 Alvarez Y, Briones A M, Hernanz R, et al. Role of NADPH oxidase and iNOS in vasoconstrictor responses of vessels from hypertensive and normotensive rats. Brit J Pharmacol, 2008, 153: 926-935
[25]  23 Félétou M, Vanhoutte P M. Endothelial dysfunction: a multifaceted disorder. Am J Physiol Heart Circ Physiol, 2006, 291: H985-H1002
[26]  24 F?rstermann U, Closs E I, Pollock J S, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension, 1994, 23: 1121-1131
[27]  25 Ridnour L A, Thomas D D, Mancardi D, et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem, 2004, 385: 1-10
[28]  26 Upmacis R K, Crabtree M J, Deeb R S, et al. Profound biopterin oxidation and protein tyrosine nitration in tissues of ApoE-null mice on an atherogenic diet: contribution of inducible nitric oxide synthase. Am J Physiol Heart Circ Physiol, 2007, 293: H2878-H2887
[29]  27 F?rstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Brit J Pharmacol, 2011, 164: 213-223
[30]  28 Liu H R, Zhao R R, Zhi J M, et al. Screening of serum autoantibodies to cardiac b1-adrenoceptors and M2-muscarinic acetylcholine receptors in 408 healthy subjects of varying ages. Autoimmunity, 1999, 29: 43-51
[31]  29 Porstmann T, Kiessig S T. Enzyme immunoassay techniques-an overview. J Immunol Methods, 1992, 150: 5-21
[32]  30 Tao L, Liu H R, Gao F, et al. Mechanical traumatic injury without circulatory shock causes cardiomyocyte apoptosis: role of reactive nitrogen and reactive oxygen species. Am J Physiol Heart Circ Physiol, 2005, 288: H2811-H2818
[33]  31 Alvarez Y, Briones A M, Balfagón G, et al. Hypertension increases the participation of vasoconstrictor prostanoids from cyclo- oxygenase-2 in phenylephrine responses. J Hypertens, 2005, 23: 767-777
[34]  32 Alvarez Y, Pérez-Girón J V, Hernanz R, et al. Losartan reduces the increased participation of COX-2 derived products in vascular responses of hypertensive rats. J Pharmacol Exp Ther, 2007, 321: 381-388
[35]  33 Fu M L, Wallukat G, Hjalmarson A, et al. Characterization of anti-peptide antibodies directed against an extracellular immunogenic epitope on the human a1-adrenergic receptor. Clin Exp Immunol, 1994, 97: 146-151
[36]  34 Bkaily G, El-Bizri N, Bui M, et al. Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors. Can J Physiol Pharmacol, 2003, 81: 234-246
[37]  35 Dora K A, Hinton J M, Walker S D, et al. An indirect influence of phenylephrine on the release of endothelium-derived vasodilators in rat small mesenteric artery. Brit J Pharmacol, 2000, 129: 381-387
[38]  36 Nishina H, Ozaki T, Hanson M A, et al. Mechanism of noradrenaline-induced vasorelaxation in isolated femoral arteries of the neonatal rat. Brit J Pharmacol, 1999, 127: 809-812
[39]  37 Mendez E, Calzada C, Ocharan E, et al. Differential expression of alpha1-adrenergic receptor subtypes in coronary microvascular endothelial cells in culture. Eur J Pharmacol, 2006, 546: 127-133
[40]  38 Briones A M, Alonso M J, Hernanz R, et al. Alterations of the nitric oxide pathway in cerebral arteries from spontaneously hypertensive rats. J Cardiovasc Pharmacol, 2002, 39: 378-388
[41]  39 Vaziri N D, Ni Z, Oveisi F. Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. Hypertension, 1998, 31: 1248-1254

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133