19 Zhang Y E. Non-Smad pathways in TGF-β signaling. Cell Res, 2009, 19: 128-139
[2]
20 Mu Y, Gudey S K, Landstrom M. Non-Smad signaling pathways. Cell Tissue Res, 2012, 347: 11-20
[3]
21 Yang Y A, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest, 2002, 109: 1607-1615
[4]
22 Muraoka R S, Dumont N, Ritter C A, et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest, 2002, 109: 1551-1559
[5]
23 Bandyopadhyay A, Lopez-Casillas F, Malik S N, et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res, 2002, 62: 4690-4695
[6]
24 Hu Z, Zhang Z, Seth P. Systemic delivery of an oncolytic adenovirus expressing soluble transforming growth factor-β receptor II-Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther, 2010, 21: 1623-1629
[7]
25 Bandyopadhyay A, Agyin J K, Wang L, et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res, 2006, 66: 6714-6721
[8]
26 Korpal M, Yan J, Lu X, et al. Imaging transforming growth factor-βeta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med, 2009, 15: 960-966
[9]
27 Seoane J. Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Clin Transl Oncol, 2008, 10: 14-19
[10]
28 Akhurst R J, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov, 2012, 11: 790-811
[11]
29 Kavsak P, Rasmussen R K, Causing C G, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell, 2000, 6: 1365-1375
[12]
30 Eichhorn P J, Rodon L, Gonzalez-Junca A, et al. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med, 2012, 18: 429-435
[13]
31 Moustakas A, Heldin C H. Coordination of TGF-β signaling by ubiquitylation. Mol Cell, 2013, 51: 555-556
[14]
32 Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412: 346-351
[15]
33 Xia Z P, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature, 2009, 461: 114-119
[16]
34 Sorrentino A, Thakur N, Grimsby S, et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol, 2008, 10: 1199-1207
[17]
35 Yamashita M, Fatyol K, Jin C, et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol Cell, 2008, 31: 918-924
[18]
36 Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 2011, 147: 992-1009
[19]
37 Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell, 2013, 23: 573-581
[20]
38 Wang X, Jin C, Tang Y, et al. Ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) by Smad ubiquitination regulatory factor 1 (Smurf1) regulates motility of breast epithelial and cancer cells. J Biol Chem, 2013, 288: 21784-21792
[21]
39 Rousseau A, McEwen A G, Poussin-Courmontagne P, et al. TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration. PLoS Biol, 2013, 11: e1001726
[22]
40 Ur-Rehman S, Gao Q, Mitsopoulos C, et al. ROCK: a resource for integrative breast cancer data analysis. Breast Cancer Res Treat, 2013, 139: 907-921
[23]
41 Loi S, Haibe-Kains B, Desmedt C, et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics, 2008, 9: 239
[24]
1 Zhang L, Huang H, Zhou F, et al. RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation. Mol Cell,2012, 46: 650-661
[25]
2 Zhang L, Zhou F, Drabsch Y, et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor.Nat Cell Biol, 2012, 14: 717-726
[26]
3 Zhang L, Zhou F, García de Vinuesa, et al. TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell, 2013, 51: 559-572
[27]
4 Aggarwal B B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 2003, 3: 745-756
[28]
5 Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol, 2009, 87: 11.9D.1-11.9D.19
[29]
6 Chung J Y, Park Y C, Ye H, et al. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci, 2002, 115: 679-688
[30]
8 Regnier C H, Masson R, Kedinger V, et al. Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc Natl Acad Sci USA, 2002, 99: 5585-5590
[31]
9 Shiels H, Li X, Schumacker P T, et al. TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. Am J Pathol, 2000, 157: 679-688
[32]
10 Regnier C H, Tomasetto, et al. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor- associated protein family, which is expressed in breast carcinoma. J Biol Chem, 1995, 270: 25715-25721
[33]
11 Camilleri-Broet S, Cremer I, Marmey B, et al. TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene, 2007, 26: 142-147
[34]
12 Bieche I, Tomasetto C, Regnier C H, et al. Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer Res, 1996, 56: 3886-3890
[35]
13 Moustakas A, Heldin C H. The regulation of TGFβ signal transduction. Development, 2009, 136: 3699-3714
[36]
14 Kang J S, Liu C, Derynck R. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol, 2009, 19: 385-394
[37]
15 Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer, 2010, 10: 415-424
[38]
16 Massague J. TGFβ in cancer. Cell, 2008, 134: 215-230
[39]
17 Zhang L, Zhou F, ten Dijke P. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci, 2013, 38: 612-620
[40]
18 Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res, 2009, 19: 156-172
[41]
7 Kedinger V, Rio M C. TRAF4, the unique family member. Adv Exp Med Biol, 2007, 597: 60-71