全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于超声驱动磁性纳米粒子的肿瘤细胞灭杀

DOI: 10.1360/052013-242, PP. 502-509

Keywords: 磁性纳米粒子,超声,肿瘤细胞

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁性纳米粒子肿瘤热疗技术是目前国际上肿瘤研究的热点.本文提出了一种基于超声驱动磁性纳米粒子(UDMNP)运动进行肿瘤细胞灭杀的新技术,实现磁性纳米粒子的肿瘤治疗.系统研究了肝癌肿瘤细胞HepG2的治疗效果,在一定超声频率下,改变超声功率和超声作用时间,UDMNP具有明显灭杀效果.实验结果显示,较小超声功率下,肿瘤细胞损伤较小,随着超声功率增加,UDMNP对肿瘤细胞表现出明显的灭杀作用.同时,随着作用时间增加,同一超声功率驱动下UDMNP对细胞的灭杀效果也明显提高,光学显微镜观察到细胞形态发生明显变化.本文提出的UDMNP肿瘤细胞灭杀方法的显著优势是减少了化学毒性和有害辐射,是一种物理性机械损伤技术,对促进磁性纳米粒子的临床医学应用有重要意义.

References

[1]  4 Zhang L, Yu F, Cole A J, et al. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J, 2009, 11: 693-671
[2]  5 曹晓娥, 徐海飞, 韩烨华, 等. 超顺磁性Fe3O4纳米粒子在3T3L1细胞内的代谢归宿. 河北医科大学学报, 2011, 32: 1374-1376
[3]  6 刘琼, 王娟, 陈秀华, 等. Fe3O4纳米粒子-氧化石墨烯纳米复合物的制备、表征及体外毒性评价. 中国医药工业杂志, 2013, 44: 253-257
[4]  7 宋凯镔, 王文波. Fe3O4-As2O3-PLA复合体联合热疗对骨肉瘤治疗的细胞学研究. 实用肿瘤学杂志, 2012, 26: 438-442
[5]  8 Le Renard P E, Buchegger F, Petri-Fink A, et al. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Int J Hyperthermia, 2009, 25: 229-239
[6]  9 Hoskins P R. Haemodynamics and blood flow measured using ultrasound imaging. P I Mech Eng H, 2010, 224: 255-271
[7]  10 Francesca L, Beaudoin M D, ArunNagdev M D, et al. Ultrasound-guided femoral nerve blocks in elderly patients with hip fractures. Am J Emerg Med, 2010, 28: 76-81
[8]  11 ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol, 2007, 93: 111-129
[9]  12 ter Haar G. Ultrasound bioeffects and safety. P I Mech Eng H, 2010, 224: 363-373
[10]  13 何申戌, 曾俊群, 熊六林, 等. 高能超声体外聚焦热疗治疗直肠癌疗效观察. 中国超声医学杂志, 2000, 16: 926-928
[11]  14 熊六林, 姚松森, 李清, 等. 高强度聚焦超声所致组织坏死形式实验研究. 中国超声医学杂志, 2003, 19: 485-487
[12]  15 隋龙, 孙红, 李成志, 等. 高能聚焦超声治疗宫颈糜烂的疗效. 复旦大学学报, 2005, 32: 95-97
[13]  16 陈朗, 金岚, 李任. 低强度超声波对大鼠皮肤胶原蛋白表达的影响. 中国超声医学杂志, 2009, 25: 445-448
[14]  17 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65: 55-63
[15]  18 Hernot S, Klibanov A L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev, 2008, 60: 1153-1166
[16]  19 van Warnel A, Kooiman K, Harteveld M, et al. Vibrating microbubbles poking indibidual cells: drug transfer into cells via sonoporation. J Control Release, 2006, 112: 149-155
[17]  2 Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia, 2005, 21: 637-647
[18]  3 Veiseh O, Gunn J, Kievit F, et al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small, 2009, 5: 256-264
[19]  1 Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem, 2004, 14: 2161-2175
[20]  20 Crouzet S, Murat F J, Pasticier G, et al. High intensity focused ultrasound (HIFU) for prostate cancer: current clinical status, outcomes and future perspectives. Int J Hyperthermia, 2010, 26: 796-803
[21]  21 林书玉. 功率超声技术的研究现状及其最新进展. 陕西师范大学学报, 2001, 29: 101-106
[22]  22 张红玲. 超声清洗机洗涤效果及分析. 中华医院感染学杂志, 2003, 13: 847-848
[23]  23 Pounder N M, Harrison A J. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics, 2008, 48: 330-338
[24]  24 Wu F, Shao Z Y, Shen D M, et al. Ultrasound reverses multidrug resistance in human cancer cells by altering gene expression of ABC transporter proteins and Bax protein. Ultrasound Med Biol, 2011, 37: 151-159
[25]  25 Müller K, Skepper J, Posfai M, et al. Effect of ultrasmallsuperparamagnetic iron oxide nanoparticles (ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials, 2007, 28: 1629-1642
[26]  26 Hsiao J, Chu H, Wang Y, et al. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed, 2008, 21: 820-829
[27]  27 曹晓娥, 徐海飞, 韩烨华, 等. 超顺磁性Fe2O3纳米粒子对RAW264.7细胞吞噬功能的影响. 河北医科大学学报, 2012, 33: 4-7
[28]  28 Cartiera M S, Johnson K M, Rajendran V, et al. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials, 2009, 30: 2790-2798
[29]  29 Li G, Li D, Zhang L, et al. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry, 2009, 15: 9868-9873
[30]  30 张吉臻, 申锷, 胡兵. 低强度超声增加前列腺癌细胞膜通透性的体外实验研究. 中华医学超声杂志, 2010, 12: 2025-2030
[31]  31 孙艳辉, 蒲从伦, 金先庆, 等. 低频低剂量超声逆转卵巢癌细胞多药耐药及机制研究. 中国超声医学杂志, 2012, 28: 784-786
[32]  34 鲍善惠, 陈玲. 超声清洗的原理及最新进展. 陕西师范大学继续教育学报, 2004, 21: 107-109
[33]  32 龚君佐, 屠重棋, 段宏, 等. Fe3O4纳米粒子的细胞相容性. 中国组织工程研究与临床康复, 2011, 15: 12-17
[34]  33 王应彪, 刘传绍, 赵波. 功率超声技术的研究现状及其应用进展. 机械研究与应用, 2006, 19: 41-43

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133