全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

P(HPMA-APMA)-ATRA的合成及其对HL-60细胞诱导分化能力的评估

DOI: 10.1360/N052013-00071, PP. 471-480

Keywords: 全反式维甲酸,P(HPMA)-APMA,P(HPMA)-APMA-ATRA,细胞分化

Full-Text   Cite this paper   Add to My Lib

Abstract:

以N-(2-羟丙基)甲基丙烯酰胺(HPMA),N-(3-氨基丙基)甲基丙烯酰胺(APMA)和全反式维甲酸(ATRA)为原料,采用自由基溶液聚合法设计合成P(HPMA-APMA)-ATRA,并用核磁共振氢谱对该化合物进行结构表征.相比于单体ATRA,聚合物的水溶性显著增加,同时可通过胞吞作用进入细胞.3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)法评估聚合物和单体ATRA对人早幼粒白血病细胞HL-60生长的抑制作用,流式细胞术检测两者对HL-60细胞周期分布及细胞表面抗原CD11b表达的影响,进一步结合氯化硝基四氮唑蓝(NBT)还原法评估聚合物诱导HL-60细胞分化的能力.结果显示,聚合物比单体ATRA具有更强的细胞生长抑制活性,其IC50值分别为1.03和4.09μmol/L;聚合物还具有更高的G0/G1期细胞阻滞效应,1.2μmol/L时,聚合物比单体ATRA的G0/G1期细胞率高出17.7%;同样,0.4μmol/L聚合物与2.4μmol/L单体ATRA诱导HL-60的NBT还原能力相当,0.8μmol/L聚合物与2.4μmol/L单体ATRA诱导HL-60细胞表面抗原CD11b表达相当,表明聚合物比单体ATRA具有更强的诱导HL-60细胞向粒细胞分化的能力,其药效增强3~4倍.

References

[1]  20 朱陵君, 李晓林, 李茹恬, 等. 智能型靶向纳米给药系统提高肿瘤治疗效果的新途径. 临床肿瘤学杂志, 2009, 14: 373-376
[2]  21 Tang R, Cheng J. Anticancer polymeric annomedicines. J Macromol Sci-Pol R, 2007, 47: 345-381
[3]  22 Etrych T, Strohalm J, Chytil P. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur J Pharm Sci, 201l, 42: 527-539
[4]  23 Etrych T, Strohalm J, Kovár L, et al. HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluatim of binding efficacy and cytostatic activity. J Control Release, 2009, 140: 18-26
[5]  24 Meerum Terwogt J M, ten Bokkel Huinink W W, Schellens J H, et al. Phase I clinical and pharmacokinetic study of PNUl66945, a novel water soluble polymer conjugated prodrug of paclitaxel. Anti-Cancer Drug, 2001, 12: 315-323
[6]  25 Gianasi E, Buckley R G, Latigo J. HPMA copolymers platinates containing dicarboxylato ligands. Preparation, characterisation and in vitro and in vivo evaluation. Drug Target, 2002, 10: 549-556
[7]  26 Lin X, Zhang Q, Rice J R, et al. Improved targeting of platinum chemotherapeutics: the antitumour activity of the HPMA copolymer platinum agent AP5280 in murine tumour models. Eur J Cancer, 2004, 40: 29l-297
[8]  27 Lakhai M R, Tenet C, Howell S B. A phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res, 2004, 10: 3386-3395
[9]  28 Yang Y, Zhou Z, He S, et al. Treatmant of prostate carcinoma with (galectin-3)-targeted HPMA copolymer-(G3-C12)-5-fluorouracil conjugates. Biomaterials, 2012, 33: 2260-2271
[10]  29 Xiang Q Y, Youg Y, Zhou Z. Synthesis and in vitro anti-tumor activity of novel HPMA copolymer-drug conjugates with potential cell surface targeting property for carcinoma cells. Eur J Pharm Biopharm, 2012, 80: 379-386
[11]  30 Tan S M, Hyland R H, Al-Shamkhani A, et al. Effect of integrin beta 2 subunit truncations on LFA-1 (CD11b/CD18) and Mac-1 (CD11b/CD18) assembly surface expression and function. J Immunol, 2000, 165: 2574-2581
[12]  1 Warrell J R, Wang Z Y, Degos L. Acute promyelocytic leukemia. New Engl J Med, 1993, 329: 177-189
[13]  2 Freemantle S J, Spinella M J, Dmitrovsky E, et al. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene, 2003, 22: 7305-7315
[14]  3 Okuno M, Kojima S, Matsushima-Nishiwaki R, et al. Retinoids in cancer chemoprevention. Curr Cancer Drug Targets, 2004, 4: 285-298
[15]  4 Sun S Y, Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol, 2002, 41: 41-55
[16]  5 Ross S A, McCaffery P J, Drager U C, et al. Retinoids in embryonal development. Physiol Rev, 2000, 80: 1021-1054
[17]  6 Warrell R P Jr, Frankel S R, Miller W H Jr, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans- retinoic acid). New Engl J Med, 1991, 324: 1385-1393
[18]  7 Patatanian E, Thompson D F. Retinoic acid syndrome: a review. J Clin Pharm Ther, 2008, 33: 331-338
[19]  10 Muindi J, Frankel S R, Miller J R, et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood, 1992, 79: 299-303
[20]  11 Guiso G, Rambaldi A, Dimitrova B, et al. Determination of orally administered all-trans-retinoic acid in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl, 1994, 665: 239-244
[21]  12 段磊. 基于纳米技术的维甲酸药物新剂型的研究. 硕士学位论文. 南京: 东南大学, 2004
[22]  13 胡连栋, 唐星, 崔福德. 全反式维甲酸固体脂质纳米粒的制备及体内外评价. 药学学报, 2005, 40: 71-75
[23]  14 Ioele G, Cione E, Risoli A, et al. Accelerated photostability study of tretinoin and isotretinoin in liposome formulations. Int J Pharm, 2005, 293: 251-260
[24]  15 Lim S J, Lee M K, Kim C K. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J Control Release, 2004, 100: 53-61
[25]  16 Ourique A F, Pohlmann A R, Guterres S S, et al. Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int J Pharm, 2008, 352: 1-4
[26]  17 Soppimath K S, Aminabhavi T M, Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 2001, 70: 1-20
[27]  18 Jeong Y I, Kang M K, Sun H S, et al. All-trans-retinoic acid release from core-shell type nanoparticles of poly([e]-caprolactone)/ poly(ethylene glycol) diblock copolymer. Int J Pharm, 2004, 273: 95-107
[28]  19 雷瑾, 马红霞, 程远国, 等. 多聚Ⅳ-(2-羟丙基)甲基丙烯酰胺-抗肿瘤药物偶合物的组成和应用研究进展. 国际药学研杂志, 2012, 39: 204-209
[29]  8 Degos L, Dombret H, Chomienne C, et al. All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood, 1995, 85: 2643-2653
[30]  9 Leo M A, Lasker J M, Raucy J L, et al. Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8. Arch Biochem Biophys, 1989, 269: 305-312

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133