15 Li W, Stuurman N, Ou G. Chromophore-assisted laser inactivation in neural development. Neurosci Bull, 2012, 28: 333-341
[2]
16 Viegas M S, Martins T C, Seco F, et al. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem, 2007, 51: 59-66
[3]
17 Houtsmuller A B. Fluorescence recovery after photobleaching: application to nuclear proteins. Adv Biochem Eng Biotechnol, 2005, 95: 177-199
[4]
18 Wang F S, Jay D G. Chromophore-assisted laser inactivation (CALI): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol, 1996, 6: 442-445
[5]
19 Takemoto K, Matsuda T, McDougall M, et al. Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells. ACS Chem Biol, 2011, 6: 401-406
[6]
20 Adams S R, Campbell R E, Gross L A, et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc, 2002, 124: 6063-6076
[7]
21 Komatsu T, Kikuchi K, Takakusa H, et al. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change. J Am Chem Soc, 2006, 128: 15946-15947
[8]
22 George N, Pick H, Vogel H, et al. Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc, 2004, 126: 8896-8897
[9]
23 Keppler A, Gendreizig S, Gronemeyer T, et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol, 2003, 21: 86-89
[10]
24 Keppler A, Pick H, Arrivoli C, et al. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci USA, 2004, 101: 9955-9959
[11]
38 Lin J Y, Sann S B, Zhou K, et al. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron, 2013, 79: 241-253
[12]
39 Teh C, Chudakov D M, Poon K L, et al. Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics. BMC Dev Biol, 2010, 10: 110
[13]
40 Serebrovskaya E O, Gorodnicheva T V, Ermakova G V, et al. Light-induced blockage of cell division with a chromatin-targeted phototoxic fluorescent protein. Biochem J, 2011, 435: 65-71
[14]
41 Shirmanova M V, Serebrovskaya E O, Lukyanov K A, et al. Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice. J Biophotonics, 2013, 6: 283-289
[15]
1 Jacobson K, Rajfur Z, Vitriol E, et al. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol, 2008, 18: 443-450
[16]
2 Buchstaller A, Jay D G. Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc Res Tech, 2000, 48: 97-106
[17]
3 Diane H K, Thomas J, Diefenbach B K, et al. Chromophore-assisted laser inactivation. Method Cell Biol, 2007, 82: 335-354
[18]
4 Jay D G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci USA, 1988, 85: 5454-5458
[19]
5 Liao J C, Roider J, Jay D G, et al. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc Natl Acad Sci USA, 1994, 91: 2659-2663
[20]
6 McLean M A, Rajfur Z, Chen Z, et al. Mechanism of chromophore assisted laser inactivation employing fluorescent proteins. Anal Chem, 2009, 81: 1755-1761
[21]
7 Beck S, Sakurai T, Eustace B, et al. Fluorophore-assisted light inactivation: a high-throughput tool for direct target validation of proteins. Proteomics, 2002, 2: 247-255
[22]
8 Linde K G, Liao J C, Jay D G. Spatial specificity of chromophore assisted laser inactivation of protein function. Biophys J, 1992, 61: 956-962
[23]
9 Rajfur Z, Roy P, Otey C, et al. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol, 2002, 4: 286-293
[24]
10 Vitriol E A, Uetrecht A C, Shen F, et al. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc Natl Acad Sci USA, 2007, 104: 6702-6707
[25]
11 Ilag L L, Ng J H, Jay D G. Chromophore-assisted laser inactivation (CALI) to validate drug targets and pharmacogenomic markers. Drug Dev Res, 2000, 49: 65-73
[26]
12 Rodriguez R, Redman R. Balancing the generation and elimination of reactive oxygen species. Proc Natl Acad Sci USA, 2005, 102: 3175-3176
[27]
13 Davies M. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun, 2003, 305: 761-770
[28]
14 Yan P, Xiong Y, Chen B, et al. Fluorophore-assisted light inactivation of calmodulin involves singlet-oxygen mediated cross-linking and methionine oxidation. Biochemistry, 2006, 45: 4736-4748
[29]
25 Gautier A, Juillerat A, Heinis C, et al. An engineered protein tag for multiprotein labeling in living cells. Chem Biol, 2008, 15: 128-136
[30]
26 Marek K W, Davis G W. Transgenically encoded protein photoinactivation (FlAsH-FALI ): acute inactivation of synaptotagmin I. Neuron, 2006, 36: 805-813
[31]
27 Tour O, Meijer R M, Zacharias D A, et al. Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol, 2003, 21: 1505-1508
[32]
28 Lee J, Yu P, Xiao X, et al. A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru (Ⅱ) tris-bipyridyl as an unusually efficient ""warhead"". Mol BioSyst, 2008, 4: 59-65
[33]
29 Bulina M E, Chudakov D M, Britanova O V, et al. A genetically encoded photosensitizer. Nat Biotechnol, 2006, 24: 95-99
[34]
30 Bulina M E, Lukyanov K A, Britanova O V, et al. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc, 2006, 1: 947-953
[35]
31 Jay D G, Sakurai T. Chromophore-assisted laser inactivation (CALI) to elucidate cellular mechanisms of cancer. Biochim Biophys Acta, 1999, 1424: M39-M48
[36]
32 Lamb R F, Ozanne B W, Roy C, et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr Biol, 1997, 7: 682-688
[37]
33 Keppler A, Ellenberg J. Chromophore-assisted laser inactivation of alpha-and gamma-tubulin SNAP-tag fusion proteins inside living cells. ACS Chem Biol, 2009, 4: 127-138
[38]
34 Vitriol E A, Wise A L, Berginski M E, et al. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia. Mol Biol Cell, 2013, 24: 2238-2247
[39]
35 Monier B, Pélissier-Monier A, Brand A H, et al. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat Cell Biol, 2010, 12: 60-65
[40]
36 Schmucker D, Su A L, Beermann A, et al. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Proc Natl Acad Sci USA, 1994, 91: 2664-2668
[41]
37 Ou G, Stuurman N, D''Ambrosio M, et al. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science, 2010, 330: 677-680