17 Yang Z, Huang J, Geng J, et al. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell, 2006, 17: 5094-5104
[2]
18 Jung C H, Ro S H, Cao J, et al. mTOR regulation of autophagy. FEBS Lett, 2010, 584: 1287-1295
[3]
19 Petiot A, Ogier-Denis E, Blommaart E F, et al. Distinct classes of phosphatidylinositol 3''-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem, 2000, 275: 992-998
[4]
20 Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126: 955-968
[5]
21 Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell, 2004, 15: 1101-1111
[6]
22 Adhami F, Schloemer A, Kuan C Y. The roles of autophagy in cerebral ischemia. Autophagy, 2007, 3: 42-44
[7]
23 Nitatori T, Sato N, Waguri S, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci, 1995, 15: 1001-1011
[8]
24 Wen Y D, Sheng R, Zhang L S, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008, 4: 762-769
[9]
25 Wang J Y, Xia Q, Chu K T, et al. Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol, 70: 314-322
[10]
26 Adhami F, Liao G, Morozov Y M, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol, 2006, 169: 566-583
[11]
27 Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis, 2008, 29: 132-141
[12]
28 Qin A P, Liu C F, Qin Y Y, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 2010, 6: 738-753
[13]
29 Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol, 2008, 172: 454-469
[14]
30 Uchiyama Y, Koike M, Shibata M. Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy, 2008, 4: 404-408
[15]
31 Shacka J J, Lu J, Xie Z L, et al. Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett, 2007, 414: 57-60
[16]
41 Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 2007, 100: 914-922
[17]
45 Wang Y, Dong X X, Cao Y, et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci, 2009, 30: 2258-2270
[18]
46 Smith C M, Chen Y, Sullivan M L, et al. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis, 2011, 43: 52-59
[19]
47 Gabryel B, Kost A, Kasprowska D. Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies? Pharmacol Rep, 2012, 64: 1-15
[20]
48 Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy, 2012, 8: 1-3
[21]
49 Liu Y, Shoji-Kawata S, Sumpter R M Jr, et al. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA, 2013, 110: 20364-20371
[22]
62 Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature, 2012, 485: 251-255
[23]
63 Narendra D, Tanaka A, Suen D F, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 2008, 183: 795-803
[24]
64 Dagda R K, Cherra S J, Kulich S M, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem, 2009, 284: 13843-13855
[25]
65 Xiong H, Wang D, Chen L, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest, 2009, 119: 650-660
[26]
66 Kawajiri S, Saiki S, Sato S, et al. PINK1 is recruited to mitochondria with Parkin and associates with LC3 in mitophagy. FEBS Lett, 2010, 584: 1073-1079
[27]
67 Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol, 2010, 189: 211-221
[28]
68 Narendra D P, Jin S M, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 2010, 8: e1000298
[29]
69 Lazarou M, Jin S M, Kane L A, et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell, 2012, 22: 320-333
[30]
70 Chen G, Cizeau J, Velde C V, et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem, 1999, 274: 7-10
[31]
72 Diwan A, Koesters A G, Odley A M, et al. Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA, 2007, 104: 6794-6799
[32]
73 Schweers R L, Zhang J, Randall M S, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA, 2007, 104: 19500-19505
[33]
74 Novak I, Kirkin V, McEwan D G, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 2010, 11: 45-51
[34]
75 Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 2012, 14: 177-185
[35]
76 Rubinsztein D C, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov, 2012, 11: 709-730
[36]
77 Ulusoy A, Kirik D. Can overexpression of parkin provide a novel strategy for neuroprotection in Parkinson''s disease? Exp Neurol, 2008, 212: 258-260
[37]
78 Chauhan A, Sharma U, Jagannathan N R, et al. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res, 2011, 225: 603-609
[38]
79 Shoji-Kawata S, Sumpter R, Leveno M, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 2013, 494: 201-206
[39]
80 Ashrafi G, Schwarz T L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 2013, 20: 31-42
[40]
81 Isakson P, Holland P, Simonsen A. The role of ALFY in selective autophagy. Cell Death Differ, 2013, 20: 12-20
[41]
82 Shaid S, Brandts C H, Serve H, et al. Ubiquitination and selective autophagy. Cell Death Differ, 2013, 20: 21-30
[42]
83 Borutaite V, Toleikis A, Brown G C. In the eye of the storm: mitochondrial damage during heart and brain ischaemia. FEBS J, 2013, 280: 4999-5014
[43]
84 Stetler R A, Leak R K, Gao Y, et al. The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cerebr Blood F Met, 2013, 33: 22-32
[44]
85 Ireland J M, Unanue E R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med, 2011, 208: 2625-2632
[45]
86 Buchan J R, Kolaitis R M, Taylor J P, et al. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell, 2013, 153: 1461-1474
[46]
71 Yussman M G, Toyokawa T, Odley A, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med, 2002, 8: 725-730
[47]
1 Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432: 1032-1036
[48]
2 Axe E L, Walker S A, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 2008, 182: 685-701
[49]
3 Hayashi-Nishino M, Fujita N, Noda T, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 2009, 11: 1433-1437
[50]
4 Hailey D W, Rambold A S, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141: 656-667
[51]
5 Ravikumar B, Moreau K, Jahreiss L, et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 2010, 12: 747-757
[52]
6 Hamasaki M, Furuta N, Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites. Nature, 2013, 495: 389-393
[53]
7 Furuya N, Yu J, Byfield M, et al. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 2005, 1: 46-52
[54]
8 Ganley I G, Lam du H, Wang J, et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 2009, 284: 12297-12305
[55]
9 Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell, 2009, 20: 1981-1991
[56]
10 Mizushima N, Kuma A, Kobayashi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci, 2003, 116: 1679-1688
[57]
11 Mizushima N, Sugita H, Yoshimori T, et al. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem, 1998, 273: 33889-33892
[58]
12 Gutierrez M G, Munafó D B, Berón W, et al. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci, 2004, 117: 2687-2697
[59]
13 Lee J A, Beigneux A, Ahmad S T, et al. ESCRT-Ⅲ dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol, 2007, 17: 1561-1567
[60]
14 Rusten T E, Vaccari T, Lindmo K, et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol, 2007, 17: 1817-1825
[61]
15 Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 2012, 151: 1256-1269
[62]
16 Yamamoto A, Tagawa Y, Yoshimori T, et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-Ⅱ-E cells. Cell Struct Funct, 1998, 23: 33-42
[63]
32 Borsello T, Croquelois K, Hornung J P, et al. N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci, 2003, 18: 473-485
[64]
33 Chen H, Yoshioka H, Kim G S, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal, 2010, 14: 1505-1517
[65]
34 Suh S W, Shin B S, Ma H, et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol, 2008, 64: 654-663
[66]
35 Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J, 2007, 26: 1749-1760
[67]
36 Xing S, Zhang Y, Li J, et al. Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy, 2012, 8: 63-76
[68]
37 Carloni S, Girelli S, Scopa C, et al. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 2010, 6: 366-377
[69]
38 Wang P, Guan Y F, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 2012, 8: 77-87
[70]
39 Mengesdorf T, Jensen P H, Mies G, et al. Down-regulation of parkin protein in transient focal cerebral ischemia: a link between stroke and degenerative disease? Proc Natl Acad Sci USA, 2002, 99: 15042-15047
[71]
40 Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 2013, 9: 1321-1333
[72]
42 Crighton D, Wilkinson S, Ryan K M. DRAM links autophagy to p53 and programmed cell death. Autophagy, 2007, 3: 72-74
[73]
43 Crighton D, Wilkinson S, O''Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006, 126: 121-134
[74]
44 Zhang X D, Wang Y, Wang Y, et al. p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy, 2009, 5: 339-350
[75]
50 Kubota C, Torii S, Hou N, et al. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem, 2010, 285: 667-674
[76]
51 Huang C, Andres A, Ratliff E, et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One, 2011, 6: e20975
[77]
52 Sheng R, Zhang L S, Han R, et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy, 2010, 6: 482-494
[78]
53 Fouillet A, Levet C, Virgone A, et al. ER stress inhibits neuronal death by promoting autophagy. Autophagy, 2012, 8: 915-926
[79]
54 Papadakis M, Hadley G, Xilouri M, et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med, 2013, 19: 351-357
[80]
55 He S, Wang C, Dong H, et al. Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy, 2012, 8: 1621-1627
[81]
56 Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 2013, 9: 1321-1333
[82]
57 Jemmerson R, Dubinsky J M, Brustovetsky N. Cytochrome C release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. Antioxid Redox Signal, 2005, 7: 1158-1172
[83]
58 Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson''s disease. Physiol Rev, 2011, 91: 1161-1218
[84]
59 Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer''s disease: the potential role of Beclin 1 interactome. Prog Neurobiol, 2013, 106-107: 33-54
[85]
60 Itoh K, Nakamura K, Iijima M, et al. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol, 2013, 23: 64-71
[86]
61 Yu D, Li M, Ni B, et al. Induction of neuronal mitophagy in acute spinal cord injury in rats. Neurotox Res, 2013, 24: 512-522