全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经调节素1-ErbB4信号通路在突触形成过程中的作用

DOI: 10.1360/052014-46, PP. 371-378

Keywords: 发育,精神分裂症,突触发生,神经环路

Full-Text   Cite this paper   Add to My Lib

Abstract:

nrg1和erbb4参与神经系统发育的多个环节,包括在神经元增生、迁移和分化,神经突起的生长和轴突导向,以及突触形成和可塑性等过程中发挥重要作用.同时,nrg1和erbb4还是精神分裂症的2个主要易感基因,在精神分裂症的发病中具有重要作用.抗精神分裂症药物也可能通过作用于神经调节素1-ErbB4信号通路而起到治疗的作用.因此,该信号通路由于其在突触和神经环路发育中的重要作用而备受关注,也成为当前开发新型抗精神分裂症药物的一个重要靶点.

References

[1]  25 Tansey M G, Chu G C, Merlie J P. ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway. J Cell Biol, 1996, 134: 465-476
[2]  26 Si J, Luo Z, Mei L. Induction of acetylcholine receptor gene expression by ARIA requires activation of mitogen-activated protein kinase. J Biol Chem, 1996, 271: 19752-19759
[3]  27 Wietasch K. Regulation of neuronal nicotinic acetylcholine receptors in the interpeduncular nucleus. Doctor Dissertation. Cambridge: Harvard University, 1997
[4]  28 Yang X, Kuo Y, Devay P, et al. A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron, 1998, 20: 255-270
[5]  29 Liu Y, Ford B, Mann M A, et al. Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci, 2001, 21: 5660-5669
[6]  30 Kawai H, Zago W, Berg D K. Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci, 2002, 22: 7903-7912
[7]  31 Zhong C, Du C, Hancock M, et al. Presynaptic type Ⅲ neuregulin 1 is required for sustained enhancement of hippocampal transmission by nicotine and for axonal targeting of alpha7 nicotinic acetylcholine receptors. J Neurosci, 2008, 28: 9111-9116
[8]  32 Hancock M L, Canetta S E, Role L W, et al. Presynaptic type Ⅲ neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons. J Cell Biol, 2008, 181: 511-521
[9]  33 Lozada A F, Wang X, Gounko N V, et al. Glutamatergic synapse formation is promoted by alpha7-containing nicotinic acetylcholine receptors. J Neurosci, 2012, 32: 7651-7661
[10]  34 Lin H, Vicini S, Hsu F C, et al. Axonal alpha7 nicotinic ACh receptors modulate presynaptic NMDA receptor expression and structural plasticity of glutamatergic presynaptic boutons. Proc Natl Acad Sci USA, 2010, 107: 16661-16666
[11]  35 Nason M W Jr, Adhikari A, Bozinoski M, et al. Disrupted activity in the hippocampal-accumbens circuit of type Ⅲ neuregulin 1 mutant mice. Neuropsychopharmacology, 2011, 36: 488-496
[12]  36 Chen Y J, Johnson M A, Lieberman M D, et al. Type Ⅲ neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci, 2008, 28: 6872-6883
[13]  37 Ozaki M, Sasner M, Yano R, et al. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature, 1997, 390: 691-694
[14]  38 Rieff H I, Raetzman L T, Sapp D W, et al. Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci, 1999, 19: 10757-10766
[15]  39 Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet, 2002, 71: 877-892
[16]  40 Li B, Woo R S, Mei L, et al. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron, 2007, 54: 583-597
[17]  41 Yin D M, Chen Y J, Lu Y S, et al. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron, 2013, 78: 644-657
[18]  42 Neddens J, Fish K N, Tricoire L, et al. Conserved interneuron-specific ErbB4 expression in frontal cortex of rodents, monkeys, and humans: implications for schizophrenia. Biol Psychiat, 2011, 70: 636-645
[19]  43 Fazzari P, Paternain A V, Valiente M, et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature, 2010, 464: 1376-1380
[20]  44 Vullhorst D, Neddens J, Karavanova I, et al. Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci, 2009, 29: 12255-12264
[21]  45 Yau H J, Wang H F, Lai C, et al. Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex, 2003, 13: 252-264
[22]  46 Ting A K, Chen Y, Wen L, et al. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci, 2011, 31: 15-25
[23]  47 Del Pino I, Garcia-Frigola C, Dehorter N, et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron, 2013, 79: 1152-1168
[24]  48 Abe Y, Namba H, Kato T, et al. Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci, 2011, 31: 5699-5709
[25]  49 Yang J M, Zhang J, Chen X J, et al. Development of GABA circuitry of fast-spiking basket interneurons in the medial prefrontal cortex of erbb4-mutant mice. J Neurosci, 2013, 33: 19724-19733
[26]  50 Xie F, Raetzman L T, Siegel R E. Neuregulin induces GABAA receptor beta2 subunit expression in cultured rat cerebellar granule neurons by activating multiple signaling pathways. J Neurochem, 2004, 90: 1521-1529
[27]  51 Xie F, Padival M, Siegel R E. Association of PSD-95 with ErbB4 facilitates neuregulin signaling in cerebellar granule neurons in culture. J Neurochem, 2007, 100: 62-72
[28]  52 Okada M, Corfas G. Neuregulin1 downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus, 2004, 14: 337-344
[29]  53 Role L W, Talmage D A. Neurobiology: new order for thought disorders. Nature, 2007, 448: 263-265
[30]  54 Yin D M, Sun X D, Bean J C, et al. Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci, 2013, 33: 19295-19303
[31]  55 Cooper M A, Koleske A J. ErbB4 localization to interneurons: clearer insights into schizophrenia pathology. Biol Psychiat, 2011, 70: 602-603
[32]  56 Chen Y, Hancock M L, Role L W, et al. Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J Neurosci, 2010, 30: 9199-9208
[33]  57 Huttenlocher P R. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res, 1979, 163: 195-205
[34]  58 Hahn C G, Wang H Y, Cho D S, et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med, 2006, 12: 824-828
[35]  59 Pitcher G M, Kalia L V, Ng D, et al. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med, 2011, 17: 470-478
[36]  60 Bjarnadottir M, Misner D L, Haverfield-Gross S, et al. Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1+/- knock-outs compared with wild-type mice. J Neurosci, 2007, 27: 4519-4529
[37]  61 Geddes A E, Huang X F, Newell K A. Reciprocal signalling between NR2 subunits of the NMDA receptor and neuregulin1 and their role in schizophrenia. Prog Neuropsychopharmacol Biol Psychiat, 2011, 35: 896-904
[38]  62 Zhang L I, Poo M M. Electrical activity and development of neural circuits. Nat Neurosci, 2001, 4: 1207-1214
[39]  63 Hua J Y, Smith S J. Neural activity and the dynamics of central nervous system development. Nat Neurosci, 2004, 7: 327-332
[40]  64 Chong V Z, Thompson M, Beltaifa S, et al. Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr Res, 2008, 100: 270-280
[41]  65 Hashimoto R, Straub R E, Weickert C S, et al. Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiat, 2004, 9: 299-307
[42]  66 Law A J, Kleinman J E, Weinberger D R, et al. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet, 2007, 16: 129-141
[43]  67 Law A J, Lipska B K, Weickert C S, et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc Natl Acad Sci USA, 2006, 103: 6747-6752
[44]  1 Mei L, Xiong W C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci, 2008, 9: 437-452
[45]  2 Gajendran N, Kapfhammer J P, Lain E, et al. Neuregulin signaling is dispensable for NMDA-and GABA(A)-receptor expression in the cerebellum in vivo. J Neurosci, 2009, 29: 2404-2413
[46]  3 Barros C S, Calabrese B, Chamero P, et al. Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci USA, 2009, 106: 4507-4512
[47]  4 Sigurdsson T, Stark K L, Karayiorgou M, et al. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature, 2010, 464: 763-767
[48]  5 Meyer-Lindenberg A. From maps to mechanisms through neuroimaging of schizophrenia. Nature, 2010, 468: 194-202
[49]  6 Penzes P, Cahill M E, Jones K A, et al. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci, 2011, 14: 285-293
[50]  7 Rosoklija G, Toomayan G, Ellis S P, et al. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiat, 2000, 57: 349-356
[51]  8 Glantz L A, Lewis D A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiat, 2000, 57: 65-73
[52]  9 Garey L J, Ong W Y, Patel T S, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosur Psychiat, 1998, 65: 446-453
[53]  10 Wen L, Lu Y S, Zhu X H, et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA, 2010, 107: 1211-1216
[54]  11 Rimer M, Barrett D W, Maldonado M A, et al. Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport, 2005, 16: 271-275
[55]  12 Bao J, Lin H, Ouyang Y, et al. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci, 2004, 7: 1250-1258
[56]  13 Bao J, Wolpowitz D, Role L W, et al. Back signaling by the Nrg-1 intracellular domain. J Cell Biol, 2003, 161: 1133-1141
[57]  14 Gerlai R, Pisacane P, Erickson S. Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behav Brain Res, 2000, 109: 219-227
[58]  15 Krivosheya D, Tapia L, Levinson J N, et al. ErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms. J Biol Chem, 2008, 283: 32944-32956
[59]  16 Huang Y Z, Won S, Ali D W, et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron, 2000, 26: 443-455
[60]  17 Garcia R A, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA, 2000, 97: 3596-3601
[61]  18 Sardi S P, Murtie J, Koirala S, et al. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell, 2006, 127: 185-197
[62]  19 Ni C Y, Murphy M P, Golde T E, et al. gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science, 2001, 294: 2179-2181
[63]  20 Jessell T M, Siegel R E, Fischbach G D. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc Natl Acad Sci USA, 1979, 76: 5397-5401
[64]  21 Sandrock A W Jr, Dryer S E, Rosen K M, et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science, 1997, 276: 599-603
[65]  22 Fu A K, Fu W Y, Cheung J, et al. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci, 2001, 4: 374-381
[66]  23 Si J, Wang Q, Mei L. Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit. J Neurosci, 1999, 19: 8498-8508
[67]  24 Altiok N, Altiok S, Changeux J P. Heregulin-stimulated acetylcholine receptor gene expression in muscle: requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity. EMBO J, 1997, 16: 717-725
[68]  68 Golub M S, Germann S L, Lloyd K C. Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav Brain Res, 2004, 153: 159-170
[69]  69 Karl T, Duffy L, Scimone A, et al. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav, 2007, 6: 677-687
[70]  70 Deakin I H, Law A J, Oliver P L, et al. Behavioural characterization of neuregulin 1 type I overexpressing transgenic mice. Neuroreport, 2009, 20: 1523-1528
[71]  71 Deakin I H, Nissen W, Law A J, et al. Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation. Cereb Cortex, 2012, 22: 1520-1529
[72]  72 Kato T, Kasai A, Mizuno M, et al. Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLoS One, 2010, 5: e14185

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133