全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RNA-Seq高通量测序技术的牦牛卵巢转录组研究:进一步完善牦牛基因结构及挖掘与繁殖相关新基因

, PP. 307-317

Keywords: 牦牛,卵巢,转录组,RNA-Seq,基因结构,新基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

RNA-Seq作为近年来新发展起来的高通量转录组测序技术,为大规模转录组学研究提供了一种全新的且更为有效的方法.目前该技术已广泛应用于转录组学中多方面的研究,尤其近年来,该技术在进一步完善基因结构信息及挖掘新转录本及新基因方面的功能也逐渐受到关注.本研究以牦牛卵巢组织作为研究对象,应用RNA-Seq技术对其进行高通量转录组测序分析,经测序后得到了一个包含26826516条过滤后测序读数,4828772880bp的卵巢测序文库,比对分析显示,有16992条牦牛基因发生表达,其中3734条基因存在不同类型的可变剪接.功能分析表明,这些表达基因涉及多种GO分类及KEGG通路.进一步分析转录组数据发现,共有7340个基因的5'或3'端在原有基因组的位置基础上发生了延伸,同时还发现了6321个新转录本,定位回基因组预测显示,外显子数量为1~84个,其中2267个新转录本预测具有编码蛋白的能力.比对分析显示,共有1200~4993条新转录本分别与Nt数据库、Nr数据库及SwissProt数据库中的基因比对上,其中与牛相似性基因最多(41.4%),其次为野牦牛(33.0%)、绵羊(6.3%)、人类(2.8%)及小鼠(1.6%)等其他物种.进一步对新转录本进行GO分类注释,结果显示,与繁殖发育相关的GO分类占有较大比例,其中繁殖类别(reproduction)所涉及的新转录本最多.本研究结果为描绘牦牛卵巢正常转录组图谱及进一步探析牦牛繁殖性能提供了基础,同时证实RNA-Seq高通量转录组技术在完善基因结构及挖掘新转录本及新基因方面的具有强大的优势,为进一步完善牦牛基因组结构信息及挖掘潜在的新基因提供了丰富数据.

References

[1]  1 Suzuki Y, Sugano S. Transcriptome analyses of human genes and applications for proteome analyses. Curr Protein Pept Sci, 2006, 7: 147-163
[2]  2 Gustincich S, Sandelin A, Plessy C, et al. The complexity of the mammalian transcriptome. J Physiol, 2006, 575: 321-332
[3]  3 Sangwan R S, Tripathi S, Singh J, et al. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene, 2013, 525: 58-76
[4]  4 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10: 57-63
[5]  5 Tariq M A, Kim H J, Jejelowo O, et al. Whole-transcriptome RNAseq analysis from minute amount of total RNA. Nucleic Acids Res, 2011, 39: e120
[6]  6 Richard H, Schulz M H, Sultan M, et al. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res, 2010, 38: e112
[7]  7 Chen C, Ai H, Ren J, et al. A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing. BMC Genomics, 2011, 12: 448
[8]  8 Lu T, Lu G, Fan D, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-Seq. Genome Res, 2010, 20: 1238-1249
[9]  9 J?ger M, Ott C E, Grunhagen J, et al. Composite transcriptome assembly of RNA-Seq data in a sheep model for delayed bone healing. BMC Genomics, 2011, 12: 158
[10]  10 Huang W, Khatib H. Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq. BMC Genomics, 2010, 11: 711
[11]  11 Qiu Q, Zhang G, Ma T, et al. The yak genome and adaptation to life at high altitude. Nat Genet, 2012, 44: 946-949
[12]  12 Regassa A, Rings F, Hoelker M, et al. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics, 2011, 12: 57
[13]  13 Mamo S, Carter F, Lonergan P, et al. Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation. BMC Genomics, 2011, 12: 151
[14]  14 Chen C S, Alonso J L, Ostuni E, et al. Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun, 2003, 307: 355-361
[15]  15 Alldinger S, Groters S, Miao Q, et al. Roles of an extracellular matrix (ECM) receptor and ECM processing enzymes in demyelinating canine distemper encephalitis. Dtsch Tierarztl Wochenschr, 2006, 113: 151-152, 154-156
[16]  16 Eppig J J. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays, 1991, 13: 569-574
[17]  17 Gilchrist R B, Ritter L J, Armstrong D T. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci, 2004, 82-83: 431-446
[18]  18 Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev, 2010, 90: 259-289
[19]  19 Sun Q Y, Schatten H. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction, 2006, 131: 193-205
[20]  20 Brunet S, Maro B. Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space. Reproduction, 2005, 130: 801-811
[21]  21 Seger R, Krebs E G. The mapk signaling cascade. FASEB J, 1995, 9: 726-735
[22]  22 Harrouk W, Clarke H J. Mitogen-activated protein (MAP) kinase during the acquisition of meiotic competence by growing oocytes of the mouse. Mol Reprod Dev, 1995, 41: 29-36
[23]  23 Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol, 2008, 20: 119-125
[24]  24 Harwood B N, Cross S K, Radford E E, et al. Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos. Dev Dyn, 2008, 237: 1099-1111
[25]  25 Boyer A, Goff A K, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab, 2010, 21: 25-32
[26]  26 Wang H X, Tekpetey F R, Kidder G M. Identification of WNT/beta-CATENIN signaling pathway components in human cumulus cells. Mol Hum Reprod, 2009, 15: 11-17
[27]  28 Seto-Young D, Zajac J, Liu H C, et al. The role of mitogen-activated protein kinase in insulin and insulin-like growth factor I (IGF-I) signaling cascades for progesterone and IGF-binding protein-1 production in human granulosa cells. J Clin Endocrinol Metab, 2003, 88: 3385-3391
[28]  29 Richardson M C, Cameron I T, Simonis C D, et al. Insulin and human chorionic gonadotropin cause a shift in the balance of sterol regulatory element-binding protein (SREBP) isoforms toward the SREBP-1c isoform in cultures of human granulosa cells. J Clin Endocrinol Metab, 2005, 90: 3738-3746
[29]  30 Fornes R, Ormazabal P, Rosas C, et al. Changes in the expression of insulin signaling pathway molecules in endometria from polycystic ovary syndrome women with or without hyperinsulinemia. Mol Med, 2010, 16: 129-136
[30]  31 Duchateau P N, Pullinger C R, Cho M H, et al. Apolipoprotein l gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene. J Lipid Res, 2001, 42: 620-630
[31]  32 Jia H P, Schutte B C, Schudy A, et al. Discovery of new human beta-defensins using a genomics-based approach. Gene, 2001, 263: 211-218
[32]  33 Whitney G, Wang S, Chang H, et al. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur J Biochem, 2001, 268: 6083-6096
[33]  34 Bourdon V, Naef F, Rao P H, et al. Genomic and expression analysis of the 12p11-p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes. Cancer Res, 2002, 62: 6218-6223
[34]  35 Kao C Y, Chen Y, Zhao Y H, et al. Orfeome-based search of airway epithelial cell-specific novel human[beta]-defensin genes. Am J Respir Cell Mol Biol, 2003, 29: 71-80
[35]  36 Seibold S, Rudroff C, Weber M, et al. Identification of a new tumor suppressor gene located at chromosome 8p21.3-22. FASEB J, 2003, 17: 1180-1182
[36]  37 李丹, 卢光琇, 傅俊江, 等. 一个新的人类睾丸特异基因的cDNA克隆和表达分析. 遗传学报, 2004, 31: 545-551
[37]  38 郭丽丽, 单宏爽, 邹星, 等. 人类锌指结构新基因ZNF18的克隆和表达谱分析. 遗传, 2005, 27: 523-530
[38]  39 Harding M A, Theodorescu D. RhoGDI2: a new metastasis suppressor gene: discovery and clinical translation. Urol Oncol, 2007, 25: 401-406
[39]  40 Carninci P, Shibata Y, Hayatsu N, et al. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res, 2000, 10: 1617-1630
[40]  41 Huminiecki L, Bicknell R. In silico cloning of novel endothelial-specific genes. Genome Res, 2000, 10: 1796-1806
[41]  42 Schultz J, Doerks T, Ponting C P, et al. More than 1000 putative new human signalling proteins revealed by EST data mining. Nat Genet, 2000, 25: 201-204
[42]  43 Nagase T, Nakayama M, Nakajima D, et al. Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res, 2001, 8: 85-95
[43]  44 Wittenberger T, Schaller H C, Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol, 2001, 307: 799-813
[44]  45 Boheler K R, Stern M D. The new role of SAGE in gene discovery. Trends Biotechnol, 2003, 21: 55-57
[45]  46 Dalla E, Mignone F, Verardo R, et al. Discovery of 342 putative new genes from the analysis of 5''-end-sequenced full-length-enriched cdna human transcripts. Genomics, 2005, 85: 739-751
[46]  27 Woods Y L, Petrie J R, Sutherland C. Dissecting insulin signaling pathways: individualised therapeutic targets for diagnosis and treatment of insulin resistant states. Endocr Metab Immune Disord Drug Targets, 2009, 9: 187-198

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133