全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝脏细胞在生物活性物质代谢调控中的协作作用

DOI: 10.1360/052013-164, PP. 175-184

Keywords: 肝实质细胞,非实质细胞,肝细胞协作,代谢调控

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝实质细胞和非实质细胞是肝脏功能的物质和结构基础.肝实质细胞是肝脏的主要细胞类型之一,承担和执行肝脏代谢、信号转导、解毒和稳态调节等多种功能.而非实质细胞也必不可少,主要包括星型细胞、肝窦内皮细胞、枯否细胞、自然杀伤细胞和隐窝细胞等,具有物质和信号转运、吞噬、抗原提呈、免疫耐受等功能.目前,有关肝脏生理功能和病理机制的研究主要集中在组织、细胞和差异分子的水平,单细胞的生理和病理功能研究也越来越深入,而肝脏细胞协作的研究比较少,系统性总结也鲜有报道.本文从肝脏细胞相互协作的角度,对肝脏的生理功能及病理机制进行探讨,为全面了解肝细胞生理功能及肝脏疾病的致病机理提供参考.

References

[1]  57 Perugorria M J, Latasa M U, Nicou A, et al. The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology, 2008, 48: 1251-1261
[2]  58 Rodgarkia-Dara C, Vejda S, Erlach N, et al. The activin axis in liver biology and disease. Mutat Res, 2006, 613: 123-137
[3]  59 Gordon K J, Blobe G C. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta, 2008, 1782: 197-228
[4]  60 Hughes R D, Evans L W. Activin A and follistatin in acute liver failure. Eur J Gastroenterol Hepatol, 15, 2003: 127-131
[5]  61 Fausto N, Campbell J S, Riehle K J. Liver regeneration. Hepatology, 2006, 43: S45-S53
[6]  44 Suh Y G, Jeong W I. Hepatic stellate cells and innate immunity in alcoholic liver disease. World J Gastroenterol, 2011, 17: 2543-2551
[7]  45 Lee U E, Friedman S L. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol, 2011, 25: 195-206
[8]  46 Muhanna N, Horani A, Doron S, et al. Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clin Exp Immunol, 2007, 148: 338-347
[9]  47 Glaser S S, Gaudio E, Miller T, et al. Cholangiocyte proliferation and liver fibrosis. Expert Rev Mol Med, 2009, 11: e7
[10]  48 Ramachandran P, Iredale J P. Liver fibrosis: a bidirectional model of fibrogenesis and resolution. QJM, 2012, 105: 813-817
[11]  49 Kisseleva T, Brenner D A. Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol, 2011, 25: 305-317
[12]  50 Deleve L D, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology, 2008, 48: 920-930
[13]  51 Iwaisako K, Brenner D A, Kisseleva T. What''s new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol, 2012, 27: 65-68
[14]  52 Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol, 2004, 5: 836-847
[15]  53 Strey C W, Markiewski M, Mastellos D, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med, 2003, 198: 913-923
[16]  54 Clavien P A, Petrowsky H, DeOliveira M L, et al. Strategies for safer liver surgery and partial liver transplantation. New Engl J Med, 2007, 356: 1545-1559
[17]  55 Michalopoulos G K, DeFrances M C. Liver regeneration. Science, 1997, 276: 60-66
[18]  56 Guvakova M A. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol, 2007, 39: 890-909
[19]  1 Malarkey D E, Johnson K, Ryan L, et al. New insights into functional aspects of liver morphology. Toxicol Pathol, 2005, 33: 27-34
[20]  2 Ishibashi H, Nakamura M, Shimoda S, et al. Liver architecture, cell function, and disease. Semin Immunopathol, 2009, 31: 399-409
[21]  3 Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol, 2001, 161: Ⅲ-XⅢ, 1-151
[22]  4 Clayton R F, Rinaldi A, Kandyba E E, et al. Liver cell lines for the study of hepatocyte functions and immunological response. Liver Int, 2005, 25: 389-402
[23]  5 Gregory P G, Connolly C K, Gillis B E, et al. The effect of coculture with nonparenchymal cells on porcine hepatocyte function. Cell Transplant, 2001, 10: 731-738
[24]  6 Sato M, Suzuki S, Senoo H. Hepatic stallate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct, 2003, 28: 105-112
[25]  7 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol, 2002, 1: 1
[26]  8 Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol, 2006, 12: 7413-7420
[27]  11 Kaspera R, Totah R A. Epoxyeicosatrienoic acids: formation, metabolism and potential role in tissue physiology and pathophysiology. Expert Opin Drug Metab Toxicol, 2009, 5: 757-771
[28]  12 Harizi H, Corcuff J B, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med, 2008, 14: 461-469
[29]  13 Lee S H, Blair I A. Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems. BMB Rep, 2009, 42: 401-410
[30]  14 Wojtalla A, Herweck F, Siegmund S V, et al. The endocannabinoid N-arachidonoyl dopamine (NADA) selectively induces oxidative stress-mediated cell deh in hepatic stellate cells but not in hepatocytes. Am J Physiol Gastrointest Liver Physiol, 2012, 302: G873-G887
[31]  15 Haeggstr?m J Z, Funk C D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev, 2011, 111: 5866-5898
[32]  16 Debier C, Larondelle Y. Vitamins A and E: metabolism, roles and transfer to offspring. Brit J Nutr, 2005, 93: 153-174
[33]  17 He H, Mennone A, Boyer J L, et al. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. Hepatology, 2011, 53: 548-557
[34]  18 Singh R. Autophagy and regulation of lipid metabolism. In: Meyerhof W, Beisiegel U, Joost H G, eds. Sensory and Metabolic Control of Energy Balance. Berlin Heidelberg: Springer-Verlag, 2010. 35-46
[35]  19 Blaner W S, O''Byrne S M, Wongsiriroj N, et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta, 2009, 1791: 467-473
[36]  20 Lee Y S, Jeong W I. Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol, 2012, 27: 75-79
[37]  21 Sauvant P, Cansell M, Atgié C. Vitamin A and lipid metabolism: relationship between hepatic stellate cells (HSCs) and adipocytes. J Physiol Biochem, 2011, 67: 487-496
[38]  22 Marletta M A, Spiering M M. Trace elements and nitric oxide function. J Nutr, 2003, 133: 1431S-1433S
[39]  23 Luiking Y C, Engelen M P, Deutz N E. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care, 2010, 13: 97-104
[40]  24 Galleano M, Simontacchi M, Puntarulo S. Nitric oxide and iron: effect of iron overload on nitric oxide production in endotoxemia. Mol Aspects Med, 2004, 25: 141-154
[41]  25 Leifeld L, Fielenbach M, Dumoulin F L, et al. Inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression in fulminant hepatic failure. J Hepatol, 2002, 37: 613-619
[42]  26 Meng Y, Gong Y C, Dou Y. Changes of serum cytokines and expression of inducible nitric oxide synthase mRNA by Kupffer cells after relief from obstructive jaundice in rats. J Gastroenterol Hepatol, 2009, 24: 1064-1069
[43]  27 Kurose I, Miura S, Ishii H, et al. Increased nitric oxide synthase activity as a cause of mitochondrial dysfunction in rat hepatocytes: roles for tumor necrosis factor alpha. Hepatology, 1996, 24: 1185-1192
[44]  28 Harbrecht B G, Billiar T R. The role of nitric oxide in Kupffer cell-hepatocyte interactions. Shock, 1995, 3: 79-87
[45]  29 Taylor B S, Alarcon L H, Billiar T R. Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry-MOSCOW+, 1998, 63: 766-781
[46]  30 Cohen R A. Role of nitric oxide in diabetic complications. Am J Ther, 2005, 12: 499-502
[47]  31 Lin H V, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab, 2011, 14: 9-19
[48]  32 Moore M C, Coate K C, Winnick J J, et al. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr, 2012, 3: 286-294
[49]  33 Ramnanan C J, Edgerton D S, Kraft G, et al. Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab, 2011, 13: 118-125
[50]  34 Schieferdecker H L, Schlaf G, Jungermann K, et al. Functions of anaphylatoxin C5a in rat liver: direct and indirect actions on nonparenchymal and parenchymal cells. Int Immunopharmacol, 2001, 1: 469-481
[51]  35 Coffin C S, Fraser H F, Panaccione R, et al. Liver diseases associated with anti-tumor necrosis factor-alpha (TNF-α) use for inflammatory bowel disease. Inflamm Bowel Dis, 2011, 17: 479-484
[52]  36 Wullaert A, van Loo G, Heyninck K, et al. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev, 2007, 28: 365-386
[53]  37 Yee S B, Ganey P E, Roth R A. The role of Kupffer cells and TNF-alpha in monocrotaline and bacterial lipopolysaccharide-induced liver injury. Toxicol Sci, 2003, 71: 124-132
[54]  38 Dajani R, Sanlioglu S, Zhang Y, et al. Pleiotropic functions of TNF-alpha determine distinct IKKbeta-dependent hepatocellular fates in response to LPS. Am J Physiol Gastrointest Liver Physiol, 2007, 292: G242-G252
[55]  39 Perry B C, Soltys D, Toledo A H, et al. Tumor necrosis factor-α in liver ischemia/reperfusion injury. J Invest Surg, 2011, 24: 178-188
[56]  40 Saiman Y, Friedman S L. The role of chemokines in acute liver injury. Front Physiol, 2012, 3: 213
[57]  41 Kovach M A, Standiford T J. The function of neutrophils in sepsis. Curr Opin Infect Dis, 2012, 25: 321-317
[58]  42 Winwood P J, Arthur M J. Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis, 1993, 13: 50-59
[59]  43 Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol, 2012, 6: 67-80
[60]  9 Zinchenko Y S, Schrum L W, Clemens M, et al. Hepatocyte and Kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function. Tissue Eng, 2006, 12: 751-761
[61]  10 Pan C, Kumar C, Bohl S, et al. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics, 2009, 8: 443-450

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133