全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝癌基因组变异与分子分型

DOI: 10.1360/052013-356, PP. 119-124

Keywords: 肝癌,基因组不稳定性,突变,分子分型

Full-Text   Cite this paper   Add to My Lib

Abstract:

肿瘤是机体在各种致癌因素刺激下,基因组发生变异导致细胞失去正常生长调控而异常增殖的一种恶性疾病.肿瘤具有维持细胞增殖信号、逃避生长抑制、抗细胞凋亡、无限复制、诱导血管生成、激活侵袭和转移、能量代谢的重编程和免疫逃避等特点.原发性肝癌是一种高致死性的癌症类型,在中国发病率高,约占全世界发病人数的一半.肝细胞癌是原发性肝癌中的主要组织学亚型,与乙型和丙型肝炎病毒感染、酒精刺激、肥胖以及饮食污染等有关.遗传学和表观遗传突变事件的研究有助于理解肝癌的发病机制并对患者进行分子分型,而分子分型则可以指导临床个体化治疗和预后判断.

References

[1]  1 Jemal A, Bray F, Center M M, et al. Global cancer statistics. CA Cancer J Clin, 2011, 61: 69-90
[2]  2 Vogelstein B, Papadopoulos N, Velculescu V E, et al. Cancer genome landscapes. Science, 2013, 339: 1546-1558
[3]  3 Garraway L A, Lander E S. Lessons from the cancer genome. Cell, 2013, 153: 17-37
[4]  4 Huang J, Sheng H H, Shen T, et al. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett, 2006, 580: 3571-3581
[5]  5 Schlaeger C, Longerich T, Schiller C, et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology, 2008, 47: 511-520
[6]  6 Chochi Y, Kawauchi S, Nakao M, et al. A copy number gain of the 6p arm is linked with advanced hepatocellular carcinoma: an array-based comparative genomic hybridization study. J Pathol, 2009, 217: 677-684
[7]  7 Aleksic K, Lackner C, Geigl J B, et al. Evolution of genomic instability in diethylnitrosamine-induced hepatocarcinogenesis in mice. Hepatology, 2011, 53: 895-904
[8]  8 Ding J, Huang S, Wu S, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol, 2010, 12: 390-399
[9]  9 Cheng N, Li Y, Han Z G. Argonaute2 promotes tumor metastasis by way of up-regulating focal adhesion kinase expression in hepatocellular carcinoma. Hepatology, 2013, 57: 1906-1918
[10]  10 Zender L, Spector M S, Xue W, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell, 2006, 125: 1253-1267
[11]  11 Sawey E T, Chanrion M, Cai C, et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell, 2011, 19: 347-358
[12]  12 Keng V W, Villanueva A, Chiang D Y, et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol, 2009, 27: 264-274
[13]  13 Hussain S P, Schwank J, Staib F, et al. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene, 2007, 26: 2166-2176
[14]  14 Miyoshi Y, Iwao K, Nagasawa Y, et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res, 1998, 58: 2524-2527
[15]  15 de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA, 1998, 95: 8847-8851
[16]  16 Park W S, Dong S M, Kim S Y, et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res, 1999, 59: 307-310
[17]  17 Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144: 646-674
[18]  18 Li M, Zhao H, Zhang X, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet, 2011, 43: 828-829
[19]  19 Huang J, Deng Q, Wang Q, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet, 2012, 44: 1117-1121
[20]  20 Baylin S B, Ohm J E. Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nat Rev Cancer, 2006, 6: 107-116
[21]  21 Esteller M. Epigenetics in cancer. N Engl J Med, 2008, 358: 1148-1159
[22]  22 Huang J, Zheng D L, Qin F S, et al. Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J Clin Invest, 2010, 120: 223-241
[23]  23 Sudo T, Utsunomiya T, Mimori K, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer, 2005, 92: 1754-1758
[24]  24 Cheng A S, Lau S S, Chen Y, et al. EZH2-mediated concordant repression of Wnt antagonists promotes beta-catenin-dependent hepatocarcinogenesis. Cancer Res, 2011, 71: 4028-4039
[25]  25 Boyault S, Rickman D S, de Reyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 2007, 45: 42-52
[26]  26 Lee J S, Chu I S, Heo J, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology, 2004, 40: 667-676
[27]  27 Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med, 2009, 361: 1437-1447

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133