全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

运动与P53调节细胞信号转导通路研究进展

DOI: 10.1360/052012-396, PP. 21-28

Keywords: 运动,P53,细胞信号转导通路

Full-Text   Cite this paper   Add to My Lib

Abstract:

P53调节多个细胞信号转导通路,其功能与肿瘤抑制、细胞周期调控、能量代谢调节、促进线粒体生物发生、保持氧化应激平衡等有关,保持P53基因的稳态表达是预防肿瘤和延缓衰老的策略之一.体育锻炼能促进机体新陈代谢、延缓细胞衰老、减少细胞癌变几率,适宜的运动能够通过影响P53调节的多个细胞信号通路延续P53信号稳态.

References

[1]  3 Matoba S, Kang J G, Patino W D, et al. P53 regulates mitochondrial respiration. Science, 2006, 312: 1650-1653
[2]  37 Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor P53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res, 2004, 64: 2627-2633
[3]  38 Smith T A. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci, 2000, 57: 170-178
[4]  39 许豪文. 运动生物化学概论. 北京: 高等教育出版社, 2001. 65-173
[5]  40 Kondoh H, Lleonart M E, Gil J, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res, 2005, 65: 177-185
[6]  41 Araki N, Morimasa T, Sakai T, et al. Comparative analysis of brain proteins from P53-deficient mice by two-dimensional electrophoresis. Electrophoresis, 2000, 21: 1880-1889
[7]  42 Green D R, Chipuk J E. P53 and metabolism: inside the TIGAR. Cell, 2006, 126: 30-32
[8]  70 Bartlett J D, Louhelainen J, Iqbal Z, et al. Reduced carbohydrate availability enhances exercise-induced p53 signalling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol, 2013, 304: R450-R458
[9]  19 Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by P53. Cell Death Differ, 2006, 13: 2140-2149
[10]  20 丁树哲, 陈彩珍, 漆正堂, 等. 运动对大鼠骨骼肌P53和COXⅠ的mRNA以及蛋白表达影响. 中国运动医学杂志, 2008, 27: 454-457
[11]  1 邵月, 陈胜强, 漆正堂, 等. 不同训练方式对骨骼肌P53调节线粒体有氧呼吸轴P53, SCO2和COXⅡ基因表达的影响. 体育科学, 2010, 30: 46-52
[12]  2 Lane D P. P53: the guardian of genome. Nature, 1992, 358: 15-16
[13]  4 Bensaad K, Tsuruta A, Selak M A, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126: 107-120
[14]  5 Bartlett J D, Morton J P. P53: the tumour suppressor turns mitochondrial regulator. J Physiol, 2013, 591: 3455-3456
[15]  6 Wang L, Wu Q, Qiu P, et al. Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem, 2001, 276: 43604-43610
[16]  7 Leith J S, Tafvizi A, Huang F, et al. Sequence-dependent sliding kinetics of p53. Proc Natl Acad Sci USA, 2012, 109: 16552-16557
[17]  8 Millau J F, Bastie N, Drouin R. P53 transcriptional activities: a general overview and some thoughts. Mutat Res, 2009, 681: 118-133
[18]  9 Sablina A A, Budanov A V, Ilyinskaya G V, et al. The antioxidant function of the P53 tumor suppressor gene. Nat Med, 2006, 11: 1306-1313
[19]  10 倪坚, 陈江野. 核转运与P53功能调控. 生命的化学, 2001, 21: 30-33
[20]  11 Bakhanashvili M, Grinberg S, Bonda E, et al. P53 in mitochondria enhances the accuracy of DNA synthesis. Cell Death Differ, 2008, 15: 1865-1874
[21]  12 Braithwaite A W, Royds J A, Jackson P. The P53 story: layers of complexity. Carcinogenesis, 2005, 26: 1161-1169
[22]  13 Iwakuma T, Lozano G. MDM2, an introduction. Mol Cancer Res, 2003, 1: 993-1000
[23]  14 Marine J C, Jochemsen A G. Mdmx as an essential regulator of P53 activity. Biochem Biophys Res Commun, 2005, 331: 750-760
[24]  15 Migliorini D, Lazzerini D E, Danovi D, et al. Mdm4 (Mdmx) regulates P53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol, 2002, 22: 5527-5538
[25]  16 Momand J, Wu H H, Dasgupta G. MDM2—master regulator of the P53 tumor suppressor protein. Gene, 2000, 242: 15-29
[26]  17 Irrcher I, Adhihetty P J, Anna-Maria Joseph, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med, 2003, 33: 783-793
[27]  18 Fields J, Hanisch J J, Choi J W, et al. How does P53 regulate mitochondrial respiration. IUBMB Life, 2007, 59: 682-684
[28]  21 Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc, 2006, 38: 1939-1944
[29]  22 孙晓杰, 黄常志. PI3K-Akt信号通路与肿瘤. 世界华人消化杂志, 2006, 14: 306-311
[30]  23 Lagranha C J, Hirabara S M, Curi R, et al. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and P53 and caspase 3 expression. Cell Biochem Funct, 2007, 25: 563-569
[31]  24 Siu P M, Always S E. Subcellular responses of P53 and Id2 in fast and slow skeletal muscle in response to stretch-induced overload. J Appl Physiol, 2005, 99: 1897-1904
[32]  25 Hatoko M, Tanaka A, Kuwahara M, et al. Difference of molecular response to ischemia-reperfusion of rat skeletal muscle as a function of ischemic time: study of the expression of P53, p21 (WAF-1), Bax protein, and apoptosis. Ann Plast Surg, 2002, 48: 68-74
[33]  26 Jin H, Wu Z, Tian T, et al. Apoptosis in atrophic skeletal muscle induced by brachial plexus injury in rats. J Trauma, 2001, 50: 31-35
[34]  27 Nakahara T, Hashimoto K, Hirano M, et al. Acute and chronic effects of alcohol exposure on skeletal muscle c-myc, P53, and Bcl-2 mRNA expression. Am J Physiol Endocrinol Metab, 2003, 285: E1273-E1281
[35]  28 Shefer G, Partridge T A, Heslop L, et al. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci, 2002, 115: 1461-1469
[36]  29 Ohnishi T, Wang X, Fukuda S, et al. Accumulation of tumor suppressor P53 in rat muscle after a space flight. Adv Space Res, 2000, 25: 2119-2122
[37]  30 Heo K S, Chang E, Le N T, et al. De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ Res, 2013, 112: 911-923
[38]  31 殷松楼, 张宝慧. 运动对大鼠胸主动脉损伤后c-myc, c-fos和P53表达的影响. 中国运动医学杂志, 1999, 18: 9-11
[39]  32 Bauer D E, Harris M H, Plas D R, et al. Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J, 2004, 18: 1303-1305
[40]  33 Ramanathan A, Wang C, Schreiber S L. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA, 2005, 102: 5992-5997
[41]  34 Ye Q, Imriskova-Sosova I, Hill B C, et al. Identification of a disulfide switch in BsSCO, a member of the SCO family of cytochrome c oxidase assembly proteins. Biochemistry, 2005, 44: 2934-2942
[42]  35 Leary S C, Cobine P A, Kaufman B A, et al. The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab, 2007, 5: 9-20
[43]  36 Saleem A, Hood D A. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle. J Physiol, 2013, 591: 3625-3636
[44]  43 Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem, 2009, 284: 1748-1754
[45]  44 Jeffers J R, Parganas E, Lee Y, et al. PUMA is an essential mediator of P53-dependent and -independent apoptotic pathways. Cancer Cell, 2003, 4: 321-328
[46]  45 Wu W S, Heinrichs S, Xu D, et al. Slug antagonizes P53-mediated apoptosis of hematopoietic progenitors by repressing PUMA. Cell, 2005, 123: 641-653
[47]  46 Jung E J, Liu G, Zhou W, et al. Myosin VI is a mediator of the P53-dependent cell survival pathway. Mol Cell Biol, 2006, 26: 2175-2186
[48]  47 Pérez-Sayáns M, Suárez-Pe?aranda J M, Gayoso-Diz P, et al. The role of p21Waf1/CIP1 as a Cip/Kip type cell-cycle regulator in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal, 2013, 18: e219-e225
[49]  48 Budanov A V, Sablina A A, Feinstein E, et al. Regeneration of peroxiredoxins by P53-regulated sestrins, homologs of bacterial AhpD. Science, 2004, 304: 596-600
[50]  49 Jones R G, Plas D R, Kubek S, et al. AMP-activated protein kinase induces a P53-dependent metabolic checkpoint. Mol Cell, 2005, 18: 283-293
[51]  50 Crighton D, Wilkinson S, O''Prey J, et al. DRAM, a p53-induced modulator of autophagy is critical for apoptosis. Cell, 2006, 126: 121-134
[52]  51 Jin S. P53, autophagy and tumor suppression. Autophagy, 2005, 1: 171-173
[53]  52 Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132: 27-42
[54]  53 Feng Z, Zhang H, Levine A J, et al. The coordinate regulation of the P53 and mTOR pathways in cells. Proc Natl Acad Sci USA, 2005, 102: 8204-8209
[55]  54 Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by P53. Mol Cell, 2001, 8: 317-325
[56]  55 Kim E, Giese A, Deppert W. Wild-type P53 in cancer cells: when a guardian turns into a blackguard. Biochem Pharmacol, 2009, 77: 11-20
[57]  56 Hainaut P, Mann K. Zinc binding and redox control of P53 structure and function. Antioxid Redox Signal, 2001, 3: 611-623
[58]  57 Sanchis-Gomar F. Sestrins: novel antioxidant and AMPK-modulating functions regulated by exercise? J Cell Physiol, 2013, 228: 1647-1650
[59]  58 Morris G, Maes M. Increased nuclear factor-κB and loss of p53 are key mechanisms in Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses, 2012, 79: 607-613
[60]  59 Qi Z, He J, Su Y, et al. Physical exercise regulates p53 activity targeting SCO2 and increases mitochondrial COX biogenesis in cardiac muscle with age. PLoS ONE, 2011, 6: e21140
[61]  60 Qi Z, He J, Zhang Y, et al. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radic Biol Med, 2011, 50: 794-800
[62]  61 Blagosklonny M V. Hormesis does not make sense except in the light of TOR-driven aging. Aging, 2011, 3: 1051-1062
[63]  62 Patki G, Lau Y S. Impact of exercise on mitochondrial transcription factor expression and damage in the striatum of a chronic mouse model of Parkinson''s disease. Neurosci Lett, 2011, 505: 268-272
[64]  63 Sun L, Shen W, Liu Z, et al. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci, 2010, 86: 39-44
[65]  64 Dinkova-Kostova A T, Talalay P. NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys, 2010, 501: 116-123
[66]  66 Song Y, Leonard S W, Traber M G, et al. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr, 2009, 139: 1626-1631
[67]  67 Song Y, Elias V, Loban A, et al. Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radic Biol Med, 2010, 48: 82-88
[68]  68 Siu P M, Always S E. Deficiency of the Bax gene attenuates denervation-induced apoptosis. Apoptosis, 2006, 11: 967-981
[69]  69 Siu P M, Always S E. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol, 2005, 565: 309-323
[70]  65 Hoene M, Franken H, Fritsche L, et al. Activation of the mitogen-activated protein kinase (MAPK) signalling pathway in the liver of mice is related to plasma glucose levels after acute exercise. Diabetologia, 2010, 53: 1131-1141

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133