1 World Health Organization. Influenza Seasonal Fact Sheet, No. 211. 2009. http://www.who.int/mediacentre/factsheets/fs211/en/
[2]
2 Chen W, Calvo P A, Malide D, et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med, 2001, 7: 1306-1312
[3]
3 Wise H M, Foeglein A, Sun J, et al. A complicated message: identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol, 2009, 83: 8021-8031
[4]
4 Jagger B W, Wise H M, Kash J C, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science, 2012, 337: 199-204
[5]
5 Muramoto Y, Noda T, Kawakami E, et al. Identification of novel influenza A virus proteins translated from PA mRNA. J Virol, 2013, 87: 2455-2462
[6]
6 Wise H M, Hutchinson E C, Jagger B W, et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog, 2012, 8: e1002998
[7]
7 Selman M, Dankar S K, Forbes N E, et al. Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect, 2012, 1: e42
[8]
8 Tong S, Li Y, Rivailler P, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA, 2012, 109: 4269-4274
[9]
9 Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog, 2013, 9: e1003657
11 Taniguchi T, Palmieri M, Weissmann C. QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature, 1978, 274: 223-228
[12]
12 Luytjes W, Krystal M, Enami M, et al. Amplification, expression, and packaging of foreign gene by influenza virus. Cell, 1989, 59: 1107-1113
[13]
13 Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology, 1994, 202: 477-479
[14]
14 Schnell M J, Mebatsion T, Conzelmann K K. Infectious rabies viruses from cloned cDNA. EMBO J, 1994, 13: 4195-4203
[15]
15 Baron M D, Barrett T. Rescue of rinderpest virus from cloned cDNA. J Virol, 1997, 71: 1265-1271
[16]
16 Hoffman M A, Banerjee A K. An infectious clone of human parainfluenza virus type 3. J Virol, 1997, 71: 4272-4277
[17]
17 Garcin D, Pelet T, Calain P, et al. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J, 1995, 14: 6087-6094
[18]
18 Collins P L, Hill M G, Camargo E, et al. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA, 1995, 92: 11563-11567
[19]
19 Bridgen A, Elliott R M. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA, 1996, 93: 15400-15404
[20]
20 Neumann G, Watanabe T, Ito H, et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA, 1999, 96: 9345-9350
[21]
21 Fodor E, Devenish L, Engelhardt O G, et al. Rescue of influenza A virus from recombinant DNA. J Virol, 1999, 73: 9679-9682
[22]
22 Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA, 2000, 97: 6108-6113
[23]
23 Neumann G, Fujii K, Kino Y, et al. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci USA, 2005, 102: 16825-16829
[24]
24 Zhang X, Kong W, Ashraf S, et al. A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine. J Virol, 2009, 83: 9296-9303
[25]
25 Chen H, Angel M, Li W, et al. All-in-one bacmids: an efficient reverse genetics strategy for influenza A virus vaccines. J Virol, 2014, 88: 10013-10025
[26]
26 Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001, 293: 1840-1842
[27]
27 Suguitan A L Jr, Matsuoka Y, Lau Y F, et al. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol, 2012, 86: 2706-2714
[28]
28 Chen H, Bright R A, Subbarao K, et al. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Res, 2007, 128: 159-163
[29]
29 Matsuoka Y, Swayne D E, Thomas C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol, 2009, 83: 4704-4708
[30]
30 Medina R A, Stertz S, Manicassamy B, et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med, 2013, 5: 187ra170
[31]
31 Zhou H, Yu Z, Hu Y, et al. The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PLoS One, 2009, 4: e6277
[32]
32 Moscona A. Oseltamivir resistance—disabling our influenza defenses. N Engl J Med, 2005, 353: 2633-2636
[33]
33 Govorkova E A, Ilyushina N A, Marathe B M, et al. Competitive fitness of oseltamivir-sensitive and -resistant highly pathogenic H5N1 influenza viruses in a ferret model. J Virol, 2010, 84: 8042-8050
[34]
34 Yen H L, Ilyushina N A, Salomon R, et al. Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. J Virol, 2007, 81: 12418-12426
[35]
35 Ilyushina N A, Seiler J P, Rehg J E, et al. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets. PLoS Pathog, 2010, 6: e1000933
[36]
36 Kiso M, Ozawa M, Le M T, et al. Effect of an asparagine-to-serine mutation at position 294 in neuraminidase on the pathogenicity of highly pathogenic H5N1 influenza A virus. J Virol, 2011, 85: 4667-4672
[37]
37 Hatta M, Hatta Y, Kim J H, et al. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog, 2007, 3: 1374-1379
[38]
38 Mase M, Tanimura N, Imada T, et al. Recent H5N1 avian influenza A virus increases rapidly in virulence to mice after a single passage in mice. J Gen Virol, 2006, 87: 3655-3659
[39]
39 de Jong M D, Simmons C P, Thanh T T, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 2006, 12: 1203-1207
[40]
40 Puthavathana P, Auewarakul P, Charoenying P C, et al. Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J Gen Virol, 2005, 86: 423-433
[41]
41 Shinya K, Hamm S, Hatta M, et al. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology, 2004, 320: 258-266
[42]
42 Kim J H, Hatta M, Watanabe S, et al. Role of host-specific amino acids in the pathogenicity of avian H5N1 influenza viruses in mice. J Gen Virol, 2010, 91: 1284-1289
[43]
43 Massin P, van der Werf S, Naffakh N. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol, 2001, 75: 5398-5404
[44]
44 Zhang H, Li X, Guo J, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol, 2014, 95: 779-786
[45]
45 Li Z, Chen H, Jiao P, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 2005, 79: 12058-12064
[46]
46 Wang J, Sun Y, Xu Q, et al. Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One, 2012, 7: e40752
[47]
47 Zhou B, Li Y, Halpin R, et al. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J Virol, 2011, 85: 357-365
[48]
48 Mok C K, Yen H L, Yu M Y, et al. Amino acid residues 253 and 591 of the PB2 protein of avian influenza virus A H9N2 contribute to mammalian pathogenesis. J Virol, 2011, 85: 9641-9645
[49]
49 Bussey K A, Bousse T L, Desmet E A, et al. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol, 2010, 84: 4395-4406
[50]
50 Liu Q, Qiao C, Marjuki H, et al. Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral replication and virulence of swine influenza virus in cultured cells and in vivo. J Virol, 2012, 86: 1233-1237
[51]
51 Mehle A, Doudna J A. Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci USA, 2009, 106: 21312-21316
[52]
52 Czudai-Matwich V, Otte A, Matrosovich M, et al. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol, 2014, 88: 8735-8742
[53]
53 Zhao Z, Yi C, Zhao L, et al. PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J Virol, 2014, 88: 2260-2267
[54]
54 Rolling T, Koerner I, Zimmermann P, et al. Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice. J Virol, 2009, 83: 6673-6680
[55]
55 Song M S, Pascua P N, Lee J H, et al. The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol, 2009, 83: 12325-12335
[56]
56 Bussey K A, Desmet E A, Mattiacio J L, et al. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. J Virol, 2011, 85: 7020-7028
[57]
57 Cheng K, Yu Z, Chai H, et al. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology, 2014, 468-470C: 207-213
[58]
58 Mehle A, Dugan V G, Taubenberger J K, et al. Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol, 2012, 86: 1750-1757
[59]
59 Song J, Feng H, Xu J, et al. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. J Virol, 2011, 85: 2180-2188
[60]
60 Song J, Xu J, Shi J, et al. Synergistic effect of S224P and N383D substitutions in the PA of H5N1 avian influenza virus contributes to mammalian adaptation. Sci Rep, 2015, 5: 10510
[61]
61 Zamarin D, Garcia-Sastre A, Xiao X, et al. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog, 2005, 1: e4
[62]
62 McAuley J L, Chipuk J E, Boyd K L, et al. PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog, 2010, 6: e1001014
[63]
63 Zamarin D, Ortigoza M B, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol, 2006, 80: 7976-7983
[64]
64 Conenello G M, Zamarin D, Perrone L A, et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog, 2007, 3: 1414-1421
[65]
65 Garcia-Sastre A, Egorov A, Matassov D, et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology, 1998, 252: 324-330
[66]
66 Gack M U, Albrecht R A, Urano T, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe, 2009, 5: 439-449
[67]
67 Nemeroff M E, Barabino S M, Li Y, et al. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs. Mol Cell, 1998, 1: 991-1000
[68]
68 Engel D A. The influenza virus NS1 protein as a therapeutic target. Antiviral Res, 2013, 99: 409-416
[69]
69 Seo S H, Hoffmann E, Webster R G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med, 2002, 8: 950-954
[70]
70 Lipatov A S, Andreansky S, Webby R J, et al. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. J Gen Virol, 2005, 86: 1121-1130
[71]
71 Jiao P, Tian G, Li Y, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol, 2008, 82: 1146-1154
[72]
72 Twu K Y, Kuo R L, Marklund J, et al. The H5N1 influenza virus NS genes selected after 1998 enhance virus replication in mammalian cells. J Virol, 2007, 81: 8112-8121
[73]
73 Jackson D, Hossain M J, Hickman D, et al. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA, 2008, 105: 4381-4386
[74]
74 Obenauer J C, Denson J, Mehta P K, et al. Large-scale sequence analysis of avian influenza isolates. Science, 2006, 311: 1576-1580
[75]
75 Long J X, Peng D X, Liu Y L, et al. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes, 2008, 36: 471-478
[76]
76 Trapp S, Soubieux D, Marty H, et al. Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J Gen Virol, 2014, 95: 1233-1243
[77]
77 Li Y, Chen S, Zhang X, et al. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLoS One, 2014, 9: e95539
[78]
78 Zhu Q, Yang H, Chen W, et al. A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol, 2008, 82: 220-228
[79]
79 Fan S, Deng G, Song J, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology, 2009, 384: 28-32
[80]
81 Liu T, Ye Z. Attenuating mutations of the matrix gene of influenza A/WSN/33 virus. J Virol, 2005, 79: 1918-1923
[81]
82 Hsieh E F, Lin S J, Mok C K, et al. Altered pathogenicity for seasonal influenza virus by single reassortment of the RNP genes derived from the 2009 pandemic influenza virus. J Infect Dis, 2011, 204: 864-872
[82]
83 Sun Y, Qin K, Wang J, et al. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proc Natl Acad Sci USA, 2011, 108: 4164-4169
[83]
84 Zhang Y, Zhang Q, Kong H, et al. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science, 2013, 340: 1459-1463
[84]
85 Chen L M, Davis C T, Zhou H, et al. Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathog, 2008, 4: e1000072
[85]
86 Li C, Hatta M, Nidom C A, et al. Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci USA, 2010, 107: 4687-4692
[86]
87 Ma W, Brenner D, Wang Z, et al. The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. J Virol, 2010, 84: 2122-2133
[87]
88 Steel J, Lowen A C, Mubareka S, et al. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog, 2009, 5: e1000252
[88]
89 Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 2009, 5: e1000709
[89]
90 Zhang Y, Zhang Q, Gao Y, et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol, 2012, 86: 9666-9674
[90]
91 Johnson N P, Mueller J. Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic. Bull Hist Med, 2002, 76: 105-115
[91]
92 Tumpey T M, Maines T R, Van Hoeven N, et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science, 2007, 315: 655-659
[92]
93 Watanabe Y, Ibrahim M S, Ellakany H F, et al. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog, 2011, 7: e1002068
[93]
94 Chutinimitkul S, van Riel D, Munster V J, et al. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. J Virol, 2010, 84: 6825-6833
[94]
95 Auewarakul P, Suptawiwat O, Kongchanagul A, et al. An avian influenza H5N1 virus that binds to a human-type receptor. J Virol, 2007, 81: 9950-9955
[95]
96 Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006, 444: 378-382
[96]
97 Wang W, Lu B, Zhou H, et al. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol, 2010, 84: 6570-6577
[97]
98 Chen L M, Blixt O, Stevens J, et al. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 2012, 422: 105-113
[98]
99 Imai M, Watanabe T, Hatta M, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012, 486: 420-428
[99]
100 Herfst S, Schrauwen E J, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 2012, 336: 1534-1541
[100]
101 Belser J A, Gustin K M, Pearce M B, et al. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature, 2013, 501: 556-559
[101]
102 Watanabe T, Kiso M, Fukuyama S, et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501: 551-555
[102]
103 Xiong X, Martin S R, Haire L F, et al. Receptor binding by an H7N9 influenza virus from humans. Nature, 2013, 499: 496-499
[103]
104 Zhang Q, Shi J, Deng G, et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science, 2013, 341: 410-414
[104]
105 Zhou J, Wang D, Gao R, et al. Biological features of novel avian influenza A (H7N9) virus. Nature, 2013, 499: 500-503
[105]
106 Richard M, Schrauwen E J, de Graaf M, et al. Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature, 2013, 501: 560-563
[106]
107 Zhu H, Wang D, Kelvin D J, et al. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science, 2013, 341: 183-186
[107]
108 Liu Q, Zhou B, Ma W, et al. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission. J Virol, 2014, 88: 8153-8165
[108]
109 Dortmans J C, Dekkers J, Wickramasinghe I N, et al. Adaptation of novel H7N9 influenza A virus to human receptors. Sci Rep, 2013, 3: 3058
[109]
110 Guan Y, Shortridge K F, Krauss S, et al. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA, 1999, 96: 9363-9367
[110]
111 Shi J, Deng G, Liu P, et al. Isolation and characterization of H7N9 viruses from live poultry markets—Implication of the source of current H7N9 infection in humans. Chin Sci Bull, 2013, 58: 1857-1863
[111]
112 Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 2013, 368: 1888-1897
[112]
80 Hui E K, Smee D F, Wong M H, et al. Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J Virol, 2006, 80: 5697-5707
[113]
114 Wan H, Perez D R. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol, 2007, 81: 5181-5191
[114]
115 Wan H, Sorrell E M, Song H, et al. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One, 2008, 3: e2923
[115]
116 Sorrell E M, Wan H, Araya Y, et al. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc Natl Acad Sci USA, 2009, 106: 7565-7570
[116]
117 Kimble J B, Sorrell E, Shao H, et al. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proc Natl Acad Sci USA, 2011, 108: 12084-12088
[117]
118 Zhong L, Wang X, Li Q, et al. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol, 2014, 88: 9568-9578
[118]
119 Salk J E. Reactions to concentrated influenza virus vaccines. J Immunol, 1948, 58: 369-395
[119]
120 Wong S S, Webby R J. Traditional and new influenza vaccines. Clin Microbiol Rev, 2013, 26: 476-492
[120]
121 Tian G, Zhang S, Li Y, et al. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology, 2005, 341: 153-162
[121]
122 Hwang S D, Kim H S, Cho S W, et al. Single dose of oil-adjuvanted inactivated vaccine protects chickens from lethal infections of highly pathogenic H5N1 influenza virus. Vaccine, 2011, 29: 2178-2186
[122]
123 Kim J K, Seiler P, Forrest H L, et al. Pathogenicity and vaccine efficacy of different clades of Asian H5N1 avian influenza A viruses in domestic ducks. J Virol, 2008, 82: 11374-11382
[123]
124 Li C, Bu Z, Chen H. Avian influenza vaccines against H5N1 “bird flu”. Trends Biotechnol, 2014, 32: 147-156
[124]
125 Baz M, Luke C J, Cheng X, et al. H5N1 vaccines in humans. Virus Res, 2013, 178: 78-98
[125]
126 Fan S, Gao Y, Shinya K, et al. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates. PLoS Pathog, 2009, 5: e1000409
[126]
127 Chen Z, Baz M, Lu J, et al. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol, 2014, 88: 7016-7023
[127]
128 Min J Y, Vogel L, Matsuoka Y, et al. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets, and monkeys. J Virol, 2010, 84: 11950-11960
[128]
129 Suguitan A L Jr, McAuliffe J, Mills K L, et al. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med, 2006, 3: e360
[129]
130 Kong H, Zhang Q, Gu C, et al. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals. Sci Rep, 2015, 5: 11233
[130]
131 Steel J, Lowen A C, Pena L, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol, 2009, 83: 1742-1753
[131]
132 Hai R, Martinez-Sobrido L, Fraser K A, et al. Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J Virol, 2008, 82: 10580-10590
[132]
133 Watanabe T, Watanabe S, Kim J H, et al. Novel approach to the development of effective H5N1 influenza A virus vaccines: use of M2 cytoplasmic tail mutants. J Virol, 2008, 82: 2486-2492
[133]
134 Akarsu H, Iwatsuki-Horimoto K, Noda T, et al. Structure-based design of NS2 mutants for attenuated influenza A virus vaccines. Virus Res, 2011, 155: 240-248
[134]
135 Gabriel G, Garn H, Wegmann M, et al. The potential of a protease activation mutant of a highly pathogenic avian influenza virus for a pandemic live vaccine. Vaccine, 2008, 26: 956-965
[135]
136 Jiang H, Zhang S, Wang Q, et al. Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology, 2010, 408: 190-196
[136]
137 Jing X, Phy K, Li X, et al. Increased hemagglutinin content in a reassortant 2009 pandemic H1N1 influenza virus with chimeric neuraminidase containing donor A/Puerto Rico/8/34 virus transmembrane and stalk domains. Vaccine, 2012, 30: 4144-4152
[137]
138 Gomila R C, Suphaphiphat P, Judge C, et al. Improving influenza virus backbones by including terminal regions of MDCK-adapted strains on hemagglutinin and neuraminidase gene segments. Vaccine, 2013, 31: 4736-4743
[138]
139 Harvey R, Nicolson C, Johnson R E, et al. Improved haemagglutinin antigen content in H5N1 candidate vaccine viruses with chimeric haemagglutinin molecules. Vaccine, 2010, 28: 8008-8014
[139]
140 Adamo J E, Liu T, Schmeisser F, et al. Optimizing viral protein yield of influenza virus strain A/Vietnam/1203/2004 by modification of the neuraminidase gene. J Virol, 2009, 83: 4023-4029
[140]
141 Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci, 1957, 147: 258-267
[141]
142 Hvistendahl M. Veterinarian-in-chief. Science, 2013, 341: 122-123, 125
[142]
113 Matrosovich M N, Krauss S, Webster R G. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology, 2001, 281: 156-162