全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

萜类合成生物学研究进展

DOI: 10.1360/N052015-00050, PP. 1040-1050

Keywords: 萜类,合成生物学,途径解析,途径装配,系统适配

Full-Text   Cite this paper   Add to My Lib

Abstract:

萜类合成生物学的研究已经使萜类微生物异源合成显示出了巨大的应用潜力.但由于植物源萜类代谢的复杂性,大量萜类合成途径仍未获得完全解析.因此当前大部分萜类仅能通过微生物异源合成获得非常简单的中间体,并且大多数产物的产量仍然较低,通常局限在毫克每升的水平.针对以上2个亟待突破的瓶颈,本文将从萜类合成途径解析与下游途径装配,高产萜类底盘细胞设计与构建,以及萜类异源合成系统的适配性研究3个方面阐述萜类合成生物学研究的最新策略与进展.

References

[1]  45 Zou R, Zhou K, Stephanopoulos G, et al. Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIAV) method. PLoS One, 2013, 8: e79557
[2]  46 Chen Y, Siewers V, Nielsen J. Profiling of cytosolic and peroxisomal acetyl-coa metabolism in Saccharomyces cerevisiae. PLoS One, 2012, 7: e42475
[3]  47 Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-coa metabolism. Metab Eng, 2013, 15: 48-54
[4]  48 Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng, 2013, 17: 42-50
[5]  49 Xu C, Liu L, Zhang Z, et al. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl Microbiol Biotechnol, 2013, 97: 519-539
[6]  50 Meng H, Wang Y, Hua Q, et al. In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioproc E, 2011, 16: 205-215
[7]  51 Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460: 894-898
[8]  52 Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823
[9]  53 Mampel J, Buescher J M, Meurer G, et al. Coping with complexity in metabolic engineering. Trends Biotechnol, 2013, 31: 52-60
[10]  54 Farmer W R, Liao J C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol, 2000, 18: 533-537
[11]  55 Dahl R H, Zhang F, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol, 2013, 31: 1039-1046
[12]  56 Conrado R J, Varner J D, DeLisa M P. Engineering the spatial organization of metabolic enzymes: mimicking nature''s synergy. Curr Opin Biotechnol, 2008, 19: 492-499
[13]  57 Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27: 753-759
[14]  1 Christianson D W. Unearthing the roots of the terpenome. Curr Opin Chem Biol, 2008, 12: 141-150
[15]  2 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[16]  3 Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74
[17]  4 Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol, 2005, 23: 612-616
[18]  5 Ceunen S, Geuns J M. Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod, 2013, 76: 1201-1228
[19]  6 Jeong J B, Choi J, Lou Z, et al. Patchouli alcohol, an essential oil of Pogostemon cablin, exhibits anti-tumorigenic activity in human colorectal cancer cells. Int Immunopharmacol, 2013, 16: 184-190
[20]  7 Schalk M, Pastore L, Mirata M A, et al. Toward a biosynthetic route to sclareol and amber odorants. J Am Chem Soc, 2012, 134: 18900-18903
[21]  8 Zhang H, Wang Y, Pfeifer B A. Bacterial hosts for natural product production. Mol Pharm, 2008, 5: 212-225
[22]  9 Wang J, Xiong Z, Meng H, et al. Synthetic biology triggers new era of antibiotics development. Subcell Biochem, 2012, 64: 95-114
[23]  10 Mitchell W. Natural products from synthetic biology. Curr Opin Chem Biol, 2011, 15: 505-515
[24]  11 Immethun C M, Hoynes-O''Connor A G, Balassy A, et al. Microbial production of isoprenoids enabled by synthetic biology. Front Microbiol, 2013, 4: 75
[25]  12 Alonso-Gutierrez J, Chan R, Batth T S, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. 2013, 19: 33-41
[26]  13 Tsuruta H, Paddon C J, Eng D, et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One, 2009, 4: e4489
[27]  14 Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA, 2012, 109: E111-E118
[28]  15 Guo J, Zhou Y J, Hillwig M L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA, 2013, 110: 12108-12113
[29]  16 Leonard E, Ajikumar P K, Thayer K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA, 2010, 107: 13654-13659
[30]  17 Dai Z, Liu L, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng, 2012, 109: 2845-2853
[31]  18 Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res, 2014, 24: 770-773
[32]  19 Sun T, Miao L, Li Q, et al. Production of lycopene by metabolically engineered Escherichia coli. Biotechnol Lett, 2014, 36: 1515-1522
[33]  20 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943
[34]  21 Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J, 2011, 66: 212-229
[35]  22 Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. Plant J, 2011, 66: 194-211
[36]  23 Lao J, Oikawa A, Bromley J R, et al. The plant glycosyltransferase clone collection for functional genomics. Plant J, 2014, 79: 517-529
[37]  24 Colby S M, Alonso W R, Katahira E J, et al. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem, 1993, 268: 23016-23024
[38]  25 Yonekura-Sakakibara K, Saito K. Functional genomics for plant natural product biosynthesis. Nat Prod Rep, 2009, 26: 1466-1487
[39]  26 Mercke P, Bengtsson M, Bouwmeester H J, et al. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme ofartemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys, 2000, 381: 173-180
[40]  27 Steele C L, Crock J, Bohlmann J, et al. Sesquiterpene synthases from grand fir (Abies Grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem, 1998, 273: 2078-2089
[41]  28 Chang M C, Eachus R A, Trieu W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol, 2007, 3: 274-277
[42]  29 Guerra-Bubb J, Croteau R, Williams R M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep, 2012, 29: 683-696
[43]  30 Qiao F, Cong H, Jiang X, et al. De novo characterization of a Cephalotaxus hainanensis transcriptome and genes related to paclitaxel biosynthesis. PLoS One, 2014, 9: e106900
[44]  31 Li S T, Zhang P, Zhang M, et al. Transcriptional profile of Taxus Chinensis cells in response to methyl jasmonate. BMC Genomics, 2012, 13: 295
[45]  32 Cui G, Huang L, Tang X, et al. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep, 2011, 38: 2471-2478
[46]  33 Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134: 3234-3241
[47]  34 Wang J F, Li S Y, Wang Y. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Res, 2015, doi: 10.1038/cr.2015.111
[48]  35 Dai Z, Liu Y, Zhang X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng, 2013, 20: 146-156
[49]  36 Moses T, Pollier J, Almagro L, et al. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16a hydroxylase from Bupleurum Falcatum. Proc Natl Acad Sci USA, 2014, 111: 1634-1639
[50]  37 Hasan M, Kim S H, Jeon J H, et al. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene. Plant Cell Rep, 2014, 33: 895-904
[51]  38 Cha M, Shim S H, Kim S H, et al. Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene. BMB Rep, 2012, 45: 589-594
[52]  39 Anterola A, Shanle E, Perroud P F, et al. Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgenic Res, 2009, 18: 655-660
[53]  40 van Herpen T W, Cankar K, Nogueira M, et al. Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS One, 2010, 5: e14222
[54]  41 Liu Q, Manzano D, Tanic N, et al. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab Eng, 2014, 23: 145-153
[55]  42 Weaver L J, Sousa M M, Wang G, et al. A kinetic-based approach to understanding heterologous mevalonate pathway function in E. coli. Biotechnol Bioeng, 2015, 112: 111-119
[56]  43 Ellis T, Adie T, Baldwin G S. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb), 2011, 3: 109-118
[57]  44 Nowroozi F F, Baidoo E E, Ermakov S, et al. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol, 2014, 98: 1567-1581

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133